已知橢圓,則以點為中點的弦所在直線方程為__________________。
      

試題分析:由題意該弦所在的直線斜率存在,設(shè)弦的兩個點為A,B,∵,,兩式相減得直線AB的斜率為,∴所求直線方程為y-2=,即
點評:“點差法”是由弦的兩端點坐標(biāo)代入圓錐曲線的方程,得到兩個等式,兩式相減,可以得到一個與弦的斜率及中點相關(guān)的式子,再結(jié)合有關(guān)條件來求解.當(dāng)題目涉及弦的中點、斜率時,一般都可以用點差法來解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的左頂點,過右焦點且垂直于長軸的弦長為
(Ⅰ)求橢圓的方程;
(Ⅱ)若過點的直線與橢圓交于點,與軸交于點,過原點與平行的直線與橢圓交于點,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)橢圓的左、右焦點分別為為橢圓上異于長軸端點的一點,,△的內(nèi)心為I,則(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線的焦點坐標(biāo)是(   )
A.B.(1,0)C.D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的左焦點F為圓的圓心,且橢圓上的點到點F的距離最小值為。
(I)求橢圓方程;
(II)已知經(jīng)過點F的動直線與橢圓交于不同的兩點A、B,點M(),證明:為定值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知拋物線,的焦點為F,直線與拋物線C交于A、B兩點,則(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

雙曲線的漸近線為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點、, 是一個動點, 且直線、的斜率之積為.
(1) 求動點的軌跡的方程;
(2) 設(shè), 過點的直線、兩點, 若對滿足條件的任意直線, 不等式恒成立, 求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率為,直線過點,,且與橢圓相切于點.(Ⅰ)求橢圓的方程;(Ⅱ)是否存在過點的直線與橢圓相交于不同的兩點、,使得?若存在,試求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案