若x的方程x2-x+a=0和x2-x+b=0(a≠b)的四個(gè)根可組成首項(xiàng)為的等差數(shù)列,則a+b的值為(    )
A.B.C.D.
D
x2-x+a=0和x2-x+b=0各有兩根,且這兩個(gè)方程的兩根和都等于1,且四個(gè)根組成等差數(shù)列,
所以可設(shè)四個(gè)根為a1,a2,a3,a4.根據(jù)等差數(shù)列的性質(zhì),只能a1+a4=a2+a3=1,設(shè)公差為d,
則a1+a4=2a1+3d=2×+3d=1.
∴d=.
從而a2=,a3=,a4=,
于是a+b=×+×=.
故選D.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列{an}滿足a1=4,an=4-(n≥2),令bn=.求證:數(shù)列{bn}是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)為整數(shù),集合中的數(shù)由小到大組成數(shù)列,則        。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知正整數(shù)列{an}的前n項(xiàng)和為Sn,且對(duì)任意的正整數(shù)n滿足2=an+1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=,求數(shù)列{bn}的前n項(xiàng)和Bn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=-(x>0),數(shù)列{an}中,a1=1,=-f(an),求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

一個(gè)首項(xiàng)為23,公差為整數(shù)的等差數(shù)列,如果前6項(xiàng)均為正數(shù),第7項(xiàng)起為負(fù)數(shù),則它的公差是(    )
A.-2B.-3C.-4D.-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

△ABC中,三內(nèi)角A、B、C成等差數(shù)列,則B等于 (  )
A.30°    B.60°
C.90°    D.120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

等差數(shù)列中,前項(xiàng)和為,且.則為何值時(shí),最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

對(duì)于正數(shù)n和a,其中a<n,定義n!=(n,其中k是滿足n>ka的最大整數(shù),那么_________

查看答案和解析>>

同步練習(xí)冊(cè)答案