點(diǎn)P(4,-2)與圓x2+y2=4上任一點(diǎn)連線的中點(diǎn)軌跡方程是( )
A.(x-2)2+(y+1)2=1
B.(x-2)2+(y+1)2=4
C.(x+4)2+(y-2)2=1
D.(x+2)2+(y-1)2=1
【答案】分析:設(shè)圓上任意一點(diǎn)為(x1,y1),中點(diǎn)為(x,y),則,由此能夠求出點(diǎn)P(4,-2)與圓x2+y2=4上任一點(diǎn)連線的中點(diǎn)軌跡方程.
解答:解:設(shè)圓上任意一點(diǎn)為(x1,y1),中點(diǎn)為(x,y),

代入x2+y2=4得
(2x-4)2+(2y+2)2=4,化簡(jiǎn)得(x-2)2+(y+1)2=1.
故選A.
點(diǎn)評(píng):本題考查點(diǎn)的軌跡方程,解題時(shí)要仔細(xì)審題,注意公式的靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

點(diǎn)P(4,-2)與圓x2+y2=4上任一點(diǎn)連線的中點(diǎn)軌跡方程是( 。
A、(x-2)2+(y+1)2=1B、(x-2)2+(y+1)2=4C、(x+4)2+(y-2)2=1D、(x+2)2+(y-1)2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點(diǎn)P(4,-2)與圓x2+y2=4上任一點(diǎn)連線的中點(diǎn)軌跡方程是
(x-2)2+(y+1)2=1
(x-2)2+(y+1)2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點(diǎn)P(4,-2)與圓x2+y2=4上任一點(diǎn)連線的中點(diǎn)軌跡方程是              (  )

A.(x-2)2+(y+1)2=1            B.(x-2)2+(y+1)2=4

C.(x+4)2+(y-2)2=1               D.(x+4)2+(y-1)2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海 題型:單選題

點(diǎn)P(4,-2)與圓x2+y2=4上任一點(diǎn)連線的中點(diǎn)軌跡方程是( 。
A.(x-2)2+(y+1)2=1B.(x-2)2+(y+1)2=4
C.(x+4)2+(y-2)2=1D.(x+2)2+(y-1)2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年上海市高考數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

點(diǎn)P(4,-2)與圓x2+y2=4上任一點(diǎn)連線的中點(diǎn)軌跡方程是( )
A.(x-2)2+(y+1)2=1
B.(x-2)2+(y+1)2=4
C.(x+4)2+(y-2)2=1
D.(x+2)2+(y-1)2=1

查看答案和解析>>

同步練習(xí)冊(cè)答案