若函數(shù)f(x)和g(x)的定義域、值域都是R,則f(x)>g(x)成立的充要條件是


  1. A.
    存在一個x(x∈R),使得f(x)>g(x)
  2. B.
    有無窮多個x(x∈R),使得f(x)>g(x)
  3. C.
    對于任意的x(x∈R),都有f(x)>g(x)
  4. D.
    x∉{x|f(x)≤g(x)}
D
分析:根據(jù)必要條件、充分條件與充要條件的判斷,可知A,B,C是充分不必要條件.
解答:A和B是同義項(xiàng),題目可以推出A,但A推不出題目,所以是充分不必要條件,C項(xiàng)中,是充分不必要條件,對于D
根據(jù)原命題成立,則逆否命題成立,所以D正確,
故選D.
點(diǎn)評:本題考查的知識點(diǎn)是必要條件、充分條件與充要條件的判斷,對全稱命題和特稱命題真假的判斷要注意:全稱命題中,要求所有的元素都要滿足性質(zhì),故需要嚴(yán)格的證明;但特稱命題為真時,我們只要舉出一個符合條件的元素值即可.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

5、若函數(shù)f(x)和g(x)的定義域、值域都是R,則不等式f(x)>g(x)有解的充要條件是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+(a+1)x+lg|a+2|,g(x)=(a+1)x,(a∈R,a≠-2).
(1)若函數(shù)f(x)和g(x)在區(qū)間[lg|a+2|,(a+1)2]上都是減函數(shù),求實(shí)數(shù)a的取值范圍;
(2)在(1)的條件下,比較f(1)與
16
的大小,寫出理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b是實(shí)數(shù),函數(shù)f(x)=x3+ax,g(x)=x2+bx,f′(x)和g′(x)是f(x),g(x)的導(dǎo)函數(shù),若f′(x)g′(x)≥0在區(qū)間I上恒成立,則稱f(x)和g(x)在區(qū)間I上單調(diào)性一致
(1)設(shè)a>0,若函數(shù)f(x)和g(x)在區(qū)間[-1,+∞)上單調(diào)性一致,求實(shí)數(shù)b的取值范圍;
(2)設(shè)a<0,且a≠b,若函數(shù)f(x)和g(x)在以a,b為端點(diǎn)的開區(qū)間上單調(diào)性一致,求|a-b|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)和g(x)都是奇函數(shù),且F(x)=af(x)+bg(x)+2在(0,+∞)上有最大值6,則F(x)在(-∞,0)上(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)和g(x)都為奇函數(shù),函數(shù)F(x)=af(x)+bg(x)+3在(0,+∞)上有最大值10,則F(x)在(-∞,0)上有(  )

查看答案和解析>>

同步練習(xí)冊答案