【題目】以平面直角坐標(biāo)系中的坐標(biāo)原點為極點,軸的正半抽為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程是,直線的參數(shù)方程是為參數(shù)).

1)求曲線的直角坐標(biāo)方程;

2)若直線與曲線交于兩點,且,求直線的傾斜角.

【答案】1;(2.

【解析】

1)在曲線的極坐標(biāo)的兩邊同時乘以,再由,可將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程;

2)將直線的參數(shù)方程代入曲線的直角坐標(biāo)方程,得到關(guān)于的一元二次方程,并列出韋達定理,借助弦長公式即可計算出的值.

1)在曲線的極坐標(biāo)的兩邊同時乘以,得,

所以,曲線的直角坐標(biāo)方程為,即

2)設(shè)點、在直線上對應(yīng)的參數(shù)分別為,

將直線的參數(shù)方程代入曲線的直角坐標(biāo)方程,得,

,

由韋達定理得,

,得,

,因此,.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)討論fx)的單調(diào)性;

2)設(shè)a4,且,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),函數(shù)的圖象經(jīng)過,其導(dǎo)函數(shù)的圖象是斜率為,過定點的一條直線.

1)討論的單調(diào)性;

2)當(dāng)時,不等式恒成立,求整數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

1)討論函數(shù)的單調(diào)性;

2)當(dāng)時,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,順次是橢圓的右頂點、上頂點和下頂點,橢圓的離心率,且.

1)求橢圓的方程;

2)若斜率的直線過點,直線與橢圓交于,兩點,試判斷:以為直徑的圓是否經(jīng)過點,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 。

(1)當(dāng)時,討論的單調(diào)性;

(2)若在點處的切線方程為,若對任意的

恒有,求的取值范圍(是自然對數(shù)的底數(shù))。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為確定下一年度投入某種產(chǎn)品的宜傳費,需了解年宣傳費對年銷售量(單位:t)的影響.該公司對近5年的年宣傳費和年銷售量數(shù)據(jù)進行了研究,發(fā)現(xiàn)年宣傳費x(萬元)和年銷售量y(單位:t)具有線性相關(guān)關(guān)系,并對數(shù)據(jù)作了初步處理,得到下面的一些統(tǒng)計量的值.

x(萬元)

2

4

5

3

6

y(單位:t

2.5

4

4.5

3

6

1)根據(jù)表中數(shù)據(jù)建立年銷售量y關(guān)于年宣傳費x的回歸方程.

2)已知這種產(chǎn)品的年利潤(萬元)與x,y的關(guān)系為根據(jù)(1)中的結(jié)果回答下列問題:

①當(dāng)年宣傳費為10萬元時,預(yù)測該產(chǎn)品的年銷售量及年利潤;

②估計該產(chǎn)品的年利潤與年宣傳費的比值的最大值.

附:回歸方程中的斜率和截距的最小二乘估計公式分別為.

參考數(shù)據(jù):.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】交通擁堵指數(shù)是綜合反映道路網(wǎng)暢通或擁堵的概念,記交通擁堵指數(shù)為,其范圍為,分別有五個級別:暢通;基本暢通;輕度擁堵;中度擁堵;嚴(yán)重擁堵.晚高峰時段(),從某市交通指揮中心選取了市區(qū)20個交通路段,依據(jù)其交通擁堵指數(shù)數(shù)據(jù)繪制的直方圖如圖所示.

(Ⅰ)用分層抽樣的方法從交通指數(shù)在,,的路段中共抽取個路段,求依次抽取的三個級別路段的個數(shù);

(Ⅱ)從(Ⅰ)中抽出的個路段中任取個,求至少有個路段為輕度擁堵的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某省數(shù)學(xué)學(xué)會為選拔一批學(xué)生代表該省參加全國高中數(shù)學(xué)聯(lián)賽,在省內(nèi)組織了一次預(yù)選賽,該省各校學(xué)生均可報名參加.現(xiàn)從所有參賽學(xué)生中隨機抽取人的成績進行統(tǒng)計,發(fā)現(xiàn)這名學(xué)生中本次預(yù)選賽成績優(yōu)秀的男、女生人數(shù)之比為,成績一般的男、女生人數(shù)之比為.已知從這名學(xué)生中隨機抽取一名學(xué)生,抽到男生的概率是

1)請將下表補充完整,并判斷是否有的把握認為在本次預(yù)選賽中學(xué)生的成績優(yōu)秀與性別有關(guān)?

成績優(yōu)秀

成績一般

總計

男生

女生

總計

2)以樣本估計總體,視樣本頻率為相應(yīng)事件發(fā)生的概率,從所有本次預(yù)選賽成績優(yōu)秀的學(xué)生中隨機抽取人代表該省參加全國聯(lián)賽,記抽到的女生人數(shù)為,求隨機變量的分布列及數(shù)學(xué)期望.

參考公式:,其中;

臨界值表供參考:

查看答案和解析>>

同步練習(xí)冊答案