設經(jīng)過拋物線C的焦點的直線l與拋物線C交于A、B兩點,那么拋物線C的準線與以AB為直徑的圓的位置關系為( 。
A、相離B、相切
C、相交但不經(jīng)過圓心D、相交且經(jīng)過圓心
考點:拋物線的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:取AB的中點M,分別過A、B、M作準線的垂線AP、BQ、MN,垂足分別為P、Q、N,作出圖形,利用拋物線的定義及梯形的中位線性質(zhì)可推導,|MN|=
1
2
|AB|,從而可判斷圓與準線的位置關系.
解答: 解:取AB的中點M,分別過A、B、M作準線的垂線AP、BQ、MN,垂足分別為P、Q、N,如圖所示:
由拋物線的定義可知,|AP|=|AF|,|BQ|=|BF|,
在直角梯形APQB中,|MN|=
1
2
(|AP|+|BQ|)=
1
2
(|AF|+|BF|)=
1
2
|AB|,
故圓心M到準線的距離等于半徑,
∴以AB為直徑的圓與拋物線的準線相切,
故選:B.
點評:本題以拋物線為載體,考查拋物線過焦點弦的性質(zhì),關鍵是正確運用拋物線的定義,合理轉(zhuǎn)化,綜合性強.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知雙曲線E:
x2
a2
-
y2
4
=1(a>0)的中心為原點O,左,右焦點分別為F1,F(xiàn)2,離心率為
3
5
5
,點P是直線x=
a2
3
上任意一點,點Q在雙曲線E上,且滿足
PF2
QF2
=0.
(1)求實數(shù)a的值;
(2)證明:直線PQ與直線OQ的斜率之積是定值;
(3)若點P的縱坐標為1,過點P作動直線l與雙曲線右支交于不同兩點M,N,在線段MN上取異于點M,N的點H,滿足
|PM|
|PN|
=
|MH|
|HN|
,證明點H恒在一條定直線上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列五個命題:
①若
AB
=
DC
,則A、B、C、D四點是平行四邊形的四個頂點;
②已知非零向量
AB
AC
滿足(
AB
|
AB
|
+
AC
|AC|
)•
BC
=0,且
AB
|
AB
|
AC
|AC|
=
1
2
,則△ABC為等邊三角形;
③已知向量
a
=(-2,1)
,
b
=(-3,0)
,則
a
b
方向上的投影為2;
④y=sin|x|的周期為π;
⑤若向量
m
n
,
n
k
,則向量
m
k

其中不正確的命題是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知變量x,y滿足條件
x≥0
y≤-x+3
y≥2x
,則
y
x-2
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

m2x-1
mx+1
<0
(m≠0)對一切x≥4恒成立,則實數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=tan(
π
4
x)+log
1
2
(x-
1
2
)-|tan(
π
4
x)-log
1
2
(x-
1
2
)|
在區(qū)間(
1
2
,2)
上的圖象大致為( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知復數(shù)z=
2
1-i
,給出下列四個結(jié)論:①|(zhì)z|=2;②z2=2i;③z的共軛復數(shù)是
.
z
=-1+i
;④z的虛部為i.其中正確結(jié)論的個數(shù)是( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若平面區(qū)域Ω:
2x-y+2≥0
y-2≤0
y≥k(x+1)
的面積為3,則實數(shù)k的值為( 。
A、
1
3
B、
1
2
C、
4
5
D、
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a是實數(shù),且f(x)=a-
2
2x+1
(x∈R),若函數(shù)f(x)為奇函數(shù),求a的值.

查看答案和解析>>

同步練習冊答案