已知關(guān)于x的方程x3-ax2-2ax+a2-1=0有且只有一個實(shí)根,則實(shí)數(shù)a的取值范圍是   
【答案】分析:先把方程變形為關(guān)于a的一元二次方程的一般形式:a2-(x2+2x)a+x3-1=0,然后利用求根公式解得a=x-1或a=x2+x+1;于是有x=a+1或x2+x+1-a=0,再利用原方程只有一個實(shí)數(shù)根,確定方程x2+x+1-a=0沒有實(shí)數(shù)根,即△<0,最后解a的不等式得到a的取值范圍.
解答:解:把方程變形為關(guān)于a的一元二次方程的一般形式:a2-(x2+2x)a+x3-1=0,則△=(x2+2x)2-4(x3-1)=(x2+2)2,
∴a=,即a=x-1或a=x2+x+1.
所以有:x=a+1或x2+x+1-a=0.
∵關(guān)于x3-ax2-2ax+a2-1=0只有一個實(shí)數(shù)根,
∴方程x2+x+1-a=0沒有實(shí)數(shù)根,即△<0,
∴1-4(1-a)<0,解得a<
所以a的取值范圍是a<
故答案為:a<
點(diǎn)評:本題考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c為常數(shù))根的判別式.當(dāng)△>0,方程有兩個不相等的實(shí)數(shù)根;當(dāng)△=0,方程有兩個相等的實(shí)數(shù)根;當(dāng)△<0,方程沒有實(shí)數(shù)根.同時考查了轉(zhuǎn)化得思想方法在解方程中的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的方程x3+ax2+bx+c=0的三個實(shí)根分別為一個橢圓,一個拋物線,一個雙曲線的離心率,則
b
a
的取值范圍
-2<
b
a
<-
1
2
-2<
b
a
<-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

A 若f(x)=2x+2-xlga是奇函數(shù),則實(shí)數(shù)a=
1
10
1
10

B 已知關(guān)于x的方程x3-ax2-2ax+a2-1=0有且只有一個實(shí)根,則實(shí)數(shù)a的取值范圍是
a
3
4
a
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•寧波模擬)已知關(guān)于x的方程x3-ax2-2ax+a2-1=0有且只有一個實(shí)根,則實(shí)數(shù)a的取值范圍是
a<
3
4
a<
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的方程x3+ax2+bx+c=0的三個實(shí)根可作為一個橢圓、一條雙曲線和一條拋物線的離心率,則
b-1a+1
的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省揚(yáng)州中學(xué)高三(上)12月質(zhì)量檢測數(shù)學(xué)試卷(解析版) 題型:填空題

已知關(guān)于x的方程x3+ax2+bx+c=0的三個實(shí)根分別為一個橢圓,一個拋物線,一個雙曲線的離心率,則的取值范圍   

查看答案和解析>>

同步練習(xí)冊答案