如圖,正三棱柱的底面邊長為,側(cè)棱長為,點在棱上.
(1)若,求證:直線平面
(2)是否存在點,使平面⊥平面,若存在,請確定點的位置,若不存在,請說明理由;
(3)請指出點的位置,使二面角平面角的大小為
(1)略(2)不存在(3)點在棱上且
(1)證:連接點,            ……(1分)
在平行四邊形中,
,又                                          ……(2分)
的中位線,從而,                         
平面∴直線平面;                          ……(3分)
(2)解:假設(shè)存在點,使平面⊥平面,
過點,則平面,
又過,則平面,                   ……(5分)
而過平面外一點有且僅有一條直線與已知平面垂直,故、應(yīng)重合于點,此時應(yīng)有,故,
又點在棱上,故,
顯然矛盾,故不存在這樣的點,使平面⊥平面.         ……(7分)

(3)解:連接,過.由(2)中的作法可知
為二面角平面角,                                ……(8分)
設(shè),則,                                                   
則可得,
,                                  ……(10分)
.∴    
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:單選題

棱臺的各側(cè)棱延長后(  )
A.相交于一點
B.不交于一點
C.僅有兩條相交于一點
D.以上都不對

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,一個圓錐的底面半徑為2cm,高為      6cm,其中有一個高為  cm的內(nèi)接圓柱.   
(1)試用表示圓柱的側(cè)面積;(2)當為何值時,圓柱的側(cè)面積最大.
 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

兩個相同的正四棱錐組成如下圖1所示的幾何體,可放入棱長為1的正方體(圖2)內(nèi),使正四棱錐的底面ABCD與正方體的某一個面平行,且各頂點均在正方體的面上,則這樣的幾何體體積的可能值有(   )
A.1個B.2個C.3個D.無窮多個

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

以一個等邊三角形底邊所在的直線為對稱軸旋轉(zhuǎn)一周所得的幾何體是(   )
A.一個圓柱B.一個圓錐C.兩個圓錐D.一個圓臺

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)如圖, 正方體ABCD-A1B1C1D1的棱長為6, 動點M在棱A1B1上. (1) 當M為A1B1的中點時, 求CM與平面DC1所成角的正弦值;

(2) 當A1M=A1B1時, 求點C到平面D1DM的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,正三棱柱中,的中點,
(1)求證:
(2)求點到平面的距離;
(3)判斷與平面的位置關(guān)系,并證明你的結(jié)論.
 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

ABC是正三角形,線段EADC都垂直于平面ABC.設(shè)EA=AB=2a,DC=a,且FBE的中點,如圖.

(1)求證:DF∥平面ABC;
(2)求證:AFBD;
(3)求平面BDF與平面ABC所成二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,在矩形ABCD中,AB=2BC=2a,E為AB上一點,將B點沿線段EC折起至點P,連接PA、PC、PD,取PD的中點F,若有AF∥平面PEC.
(1)試確定E點位置;
(2)若異面直線PE、CD所成的角為60°,并且PA的長度大于a,
求證:平面PEC⊥平面AECD.

查看答案和解析>>

同步練習冊答案