8.函數(shù)y=|-x|-|x-3|在定義域上有(  )
A.最大值2,最小值-2B.最大值3,最小值-3
C.最大值1,最小值-3D.最大值4,最小值0

分析 利用絕對值的幾何意義,化簡函數(shù),即可得出結(jié)論.

解答 解:x≤0,y=-x-3+x=-3,
0<x<3,y=x-3+x=2x-3∈(-3,3),
x≥3,y=x-x+3=3,
∴函數(shù)y=|-x|-|x-3|在定義域上有最大值3,最小值-3,
故選B.

點評 本題考查絕對值函數(shù),考查函數(shù)的最值,正確轉(zhuǎn)化是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.定義在R上的偶函數(shù)f(x)滿足f(x+2)=f(x),且在[-3,-2]上是減函數(shù),若α,β是銳角三角形的兩個內(nèi)角,則( 。
A.f(sinα)>f(sinβ)B.f(sinα)<f(cosβ)C.f(cosα)<f(cosβ)D.f(sinα)>f(cosβ)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列函數(shù)中,既是偶函數(shù),又是在區(qū)間(0,+∞)上單遞減的函數(shù)是(  )
A.y=x-2B.y=x3C.y=ln(x+$\sqrt{{x^2}+1}$)D.y=sin2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知f(x)是定義在R上的奇函數(shù),當(dāng)x>0上,f(x)=x2-x-1.
(1)求函數(shù)f(x)的解析式;
(2)解不等式f(x)>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.a(chǎn)為參數(shù),函數(shù)f(x)=(x+a)•3${\;}^{x-2+{a^2}}}$-(x-a)•38-x-3a是偶函數(shù),則a可取值是2或-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.滿足集合M⊆{1,2,3,4},且M∩{1,2,4}={1,4}的集合M的個數(shù)為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.平行于圓錐底面的截面面積是底面積的一半,則此截面分圓錐的高為上、下兩段的比為1:($\sqrt{2}-1$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)函數(shù)f(x)=$\left\{{\begin{array}{l}{(a+3)x-5\;\;(x<1)}\\{\frac{2a}{x}\;\;\;(x≥1)}\end{array}}$是R上的增函數(shù),則實數(shù)a的取值范圍是( 。
A.(0,2]B.[-3,0)C.[-2,0)D.(0,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)y=f(x)是函數(shù)y=ex的反函數(shù),y=g(x)的圖象與y=f(x)的圖象關(guān)于y軸對稱,若g(m)=-1,則m的值是(  )
A.-eB.-$\frac{1}{e}$C.eD.$\frac{1}{e}$

查看答案和解析>>

同步練習(xí)冊答案