設(shè)定義在R上的函數(shù)f(x)=
1
|x-3|
,x≠3
1,x=3
,若關(guān)于x的方程f2(x)+af(x)+b=0有5個(gè)不同實(shí)數(shù)解,則實(shí)數(shù)a的取值范圍是( 。
A、(0,1)
B、(-∞,-1)
C、(1,+∞)
D、(-∞,-2)∪(-2,-1)
分析:題中原方程f2(x)+af(x)+b=0有且只有5個(gè)不同實(shí)數(shù)解,即要求對(duì)應(yīng)于f(x)=某個(gè)常數(shù)有3個(gè)不同實(shí)數(shù)解,故先根據(jù)題意作出f(x)的簡(jiǎn)圖,由圖可知,只有當(dāng)f(x)=1時(shí),它有三個(gè)根.且當(dāng)f(x)=k,K>0且k≠1時(shí),關(guān)于x的方程f2(x)+af(x)+b=0有5個(gè)不同實(shí)數(shù)解,據(jù)此即可求得實(shí)數(shù)a的取值范圍.
解答:精英家教網(wǎng)解:∵題中原方程f2(x)+af(x)+b=0有且只有5個(gè)不同實(shí)數(shù)解,
∴即要求對(duì)應(yīng)于f(x)等于某個(gè)常數(shù)有3個(gè)不同實(shí)數(shù)解,
∴故先根據(jù)題意作出f(x)的簡(jiǎn)圖:
由圖可知,只有當(dāng)f(x)=1時(shí),它有三個(gè)根.
故關(guān)于x的方程f2(x)+af(x)+b=0中,
有:1+a+b=0,b=-1-a,
且當(dāng)f(x)=k,k>0且k≠1時(shí),關(guān)于x的方程f2(x)+af(x)+b=0有5個(gè)不同實(shí)數(shù)解,
∴k2+ak-1-a=0,
a=-1-k,∵k>0且k≠1,
∴a∈(-∞,-2)∪(-2,-1)
故選D.
點(diǎn)評(píng):數(shù)形結(jié)合是數(shù)學(xué)解題中常用的思想方法,能夠變抽象思維為形象思維,有助于把握數(shù)學(xué)問題的本質(zhì);另外,由于使用了數(shù)形結(jié)合的方法,很多問題便迎刃而解,且解法簡(jiǎn)捷.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)定義在R上的函數(shù)f(x)=
1
x-2
(x>2)
1
2-x
(x<2)
1(x=2)
,若關(guān)于x的方程f2(x)+af(x)+b=3有且只有3個(gè)不同實(shí)數(shù)解x1、x2、x3,且x1<x2<x3,則x12+x22+x32=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)定義在R上的函數(shù)f(x)滿足f(x)•f(x+2)=3,若f(1)=2,則f(5)=
2
2
;f(2011)=
3
2
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•順義區(qū)二模)設(shè)定義在R上的函數(shù)f(x)是最小正周期為2π的偶函數(shù),f′(x)是f(x)的導(dǎo)函數(shù).當(dāng)x∈[0,π]時(shí),0<f(x)<1;當(dāng)x∈(0,π)且x≠
π
2
時(shí),(x-
π
2
)f′(x)<0
.則函數(shù)y=f(x)-cosx在[-3π,3π]上的零點(diǎn)個(gè)數(shù)為
6
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)定義在R上的函數(shù)f(x)滿足f(x+π)=f(x-π),f(
π
2
-x
)=f(
π
2
+x
),當(dāng)x∈[-
π
2
,
π
2
]
時(shí),0<f(x)<1;當(dāng)x∈(-
π
2
,
π
2
)
且x≠0時(shí),x•f′(x)<0,則y=f(x)與y=cosx的圖象在[-2π,2π]上的交點(diǎn)個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)定義在R上的函數(shù)f(x)同時(shí)滿足以下條件:①f(x+1)=-f(x)對(duì)任意的x都成立;②當(dāng)x∈[0,1]時(shí),f(x)=ex-e•cos
πx
2
+m(其中e=2.71828…是自然對(duì)數(shù)的底數(shù),m是常數(shù)).記f(x)在區(qū)間[2013,2016]上的零點(diǎn)個(gè)數(shù)為n,則(  )
A、m=-
1
2
,n=6
B、m=1-e,n=5
C、m=-
1
2
,n=3
D、m=e-1,n=4

查看答案和解析>>

同步練習(xí)冊(cè)答案