如圖,在平面直角坐標(biāo)系中,正方形OABC的邊長為1,E為AB的中點,若F為正方形內(nèi)(含邊界)任意一點,則數(shù)學(xué)公式的最大值為


  1. A.
    1
  2. B.
    2
  3. C.
    3
  4. D.
    數(shù)學(xué)公式
D
分析:由題意,得到向量的坐標(biāo)為(1,),再設(shè)向量=(x,y),滿足,得到數(shù)量積,運動F點可得,當(dāng)F點與點B(1,1)重合時,數(shù)量積取到最大值,可得正確選項.
解答:∵E為AB的中點,正方形OABC的邊長為1,
∴E(1,),得=(1,),
又∵F為正方形內(nèi)(含邊界)任意一點,
=(x,y),滿足
又∵==
∴當(dāng)F點運動到點B(1,1)處時,的最大值為
故選D
點評:本題考查向量的數(shù)量積的應(yīng)用,考查了用坐標(biāo)法求向量數(shù)量積的最值問題,考查計算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△OAB中,點P是線段OB及線段AB延長線所圍成的陰影區(qū)域(含邊界)的任意一點,且
OP
=x
OA
+y
OB
則在直角坐標(biāo)平面內(nèi),實數(shù)對(x,y)所示的區(qū)域在直線y=4的下側(cè)部分的面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

1、如圖,在直角坐標(biāo)平面內(nèi)有一個邊長為a,中心在原點O的正六邊形ABCDEF,AB∥Ox.直線L:y=kx+t(k為常數(shù))與正六邊形交于M、N兩點,記△OMN的面積為S,則函數(shù)S=f(t)的奇偶性為
偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直角坐標(biāo)平面內(nèi)有一個邊長為a、中心在原點O的正六邊形ABCDEF,AB∥Ox.直線L:y=kx+t(k為常數(shù))與正六邊形交于M、N兩點,記△OMN的面積為S,則函數(shù)S=f(t)的奇偶性為( 。
A、偶函數(shù)B、奇函數(shù)C、不是奇函數(shù),也不是偶函數(shù)D、奇偶性與k有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•海珠區(qū)一模)如圖,在直角坐標(biāo)平面內(nèi),射線OT落在60°的終邊上,任作一條射線OA,OA落在∠xOT內(nèi)的概率是
1
6
1
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,一定長m的線段,其端點AB分別在x軸、y軸上滑動,設(shè)點M滿足(λ是大于0,且不等于1的常數(shù)).

試問:是否存在定點E、F,使|ME|、|MB|、|MF|成等差數(shù)列?若存在,求出E、F的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案