已知等比數(shù)列{an}的首項(xiàng)為1,若4a1,2a2,a3成等差數(shù)列,則數(shù)列{}的前5項(xiàng)和為   
【答案】分析:由4a1,2a2,a3成等差數(shù)列,利用等差數(shù)列的性質(zhì),求出數(shù)列的公比,從而得到數(shù)列的項(xiàng),由此可得結(jié)論.
解答:解:設(shè)等比數(shù)列{an}的公比為q,則
∵4a1,2a2,a3成等差數(shù)列
∴2a2-4a1=a3-2a2,
∴2q-4=q2-2q,
∴q2-4q+4=0,
∴q=2,
∴a1=1,a2=2,a3=4,a4=8,a5=16,
∴數(shù)列{}的前5項(xiàng)和為=
故答案為:
點(diǎn)評(píng):本題考查數(shù)列的應(yīng)用,解題時(shí)確定數(shù)列的公比是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

5、已知等比數(shù)列{an}的前n項(xiàng)和為Sn,公比q≠1,若S5=3a4+1,S4=2a3+1,則q等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}中,a2=9,a5=243.
(1)求{an}的通項(xiàng)公式;
(2)令bn=log3an,求數(shù)列{
1bnbn+1
}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}滿足a1•a7=3a3a4,則數(shù)列{an}的公比q=
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}中a1=64,公比q≠1,且a2,a3,a4分別為某等差數(shù)列的第5項(xiàng),第3項(xiàng),第2項(xiàng).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=log2an,求數(shù)列{|bn|}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}中,a3+a6=36,a4+a7=18.若an=
12
,則n=
9
9

查看答案和解析>>

同步練習(xí)冊(cè)答案