【題目】選修4-5:不等式選講

已知函數(shù)(其中).

(1)當(dāng)時(shí),求不等式的解集;

(2)若關(guān)于的不等式恒成立,求的取值范圍.

【答案】(1).

(2).

【解析】試題分析:(1)方法一:分類討論去掉絕對值,轉(zhuǎn)化為一般的不等式,即可求解不等式的解集;

方法二:去掉絕對值,得到分段函數(shù),畫出函數(shù)的圖象,結(jié)合圖象即可求解不等式的解集.

(2)不等式即關(guān)于的不等式恒成立,利用絕對值不等式,得,進(jìn)而求解實(shí)數(shù)的取值范圍.

試題解析:

(1)當(dāng)時(shí),函數(shù),

則不等式為,

①當(dāng)時(shí),原不等式為,解得: ;

②當(dāng)時(shí),原不等式為,解得: .此時(shí)不等式無解;

③當(dāng)時(shí),原不等式為,解得: ,

原不等式的解集為.

方法二:當(dāng)時(shí),函數(shù) ,畫出函數(shù)的圖象,如圖:

結(jié)合圖象可得原不等式的解集為.

(2)不等式即為 ,

即關(guān)于的不等式恒成立.

,

所以

解得

解得.

所以的取值范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,已知圓的圓心為,半徑為.以極點(diǎn)為原點(diǎn),極軸方向?yàn)?/span>軸正半軸方向,利用相同單位長度建立平面直角坐標(biāo)系,直線的參數(shù)方程為為參數(shù),).

(Ⅰ)寫出圓的極坐標(biāo)方程和直線的普通方程;

(Ⅱ)若直線與圓交于、兩點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,側(cè)面底面,底面是平行四邊形, , , , 的中點(diǎn),點(diǎn)在線段上.

(Ⅰ)求證: ;

(Ⅱ)試確定點(diǎn)的位置,使得直線與平面所成的角和直線與平面所成的角相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從1到7的7個(gè)數(shù)字中取兩個(gè)偶數(shù)和三個(gè)奇數(shù)組成沒有重復(fù)數(shù)字的五位數(shù).

試問:(1)能組成多少個(gè)不同的五位偶數(shù)?

(2)五位數(shù)中,兩個(gè)偶數(shù)排在一起的有幾個(gè)?

(3)兩個(gè)偶數(shù)不相鄰且三個(gè)奇數(shù)也不相鄰的五位數(shù)有幾個(gè)?(所有結(jié)果均用數(shù)值表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知下面四個(gè)命題:

①“若,則”的逆否命題為“若,則

②“”是“”的充分不必要條件

③命題“若,則”的逆否命題為真命題

④若為假命題,則、均為假命題,其中真命題個(gè)數(shù)為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果直線與橢圓只有一個(gè)交點(diǎn),稱該直線為橢圓的“切線”.已知橢圓,點(diǎn)是橢圓上的任意一點(diǎn),直線過點(diǎn)且是橢圓的“切線”.

(1)證明:過橢圓上的點(diǎn)的“切線”方程是

(2)設(shè),是橢圓長軸上的兩個(gè)端點(diǎn),點(diǎn)不在坐標(biāo)軸上,直線,分別交軸于點(diǎn),,過的橢圓的“切線”軸于點(diǎn),證明:點(diǎn)是線段的中點(diǎn);

(3)點(diǎn)不在軸上,記橢圓的兩個(gè)焦點(diǎn)分別為,判斷過的橢圓的“切線”與直線所成夾角是否相等?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某污水處理廠要在一個(gè)矩形污水處理池(ABCD)的池底水平鋪設(shè)污水凈化管道(管道構(gòu)成Rt△FHE,H是直角項(xiàng)點(diǎn))來處理污水.管道越長,污水凈化效果越好.設(shè)計(jì)要求管道的接口H是AB的中點(diǎn),E,F(xiàn)分別落在線段BC,AD上.已知AB=20米,AD=米,記∠BHE=

(1)試將污水凈化管道的長度L表示為的函數(shù),并寫出定義域;

(2)當(dāng)取何值時(shí),污水凈化效果最好?并求出此時(shí)管道的長度L.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】玉山一中籃球體育測試要求學(xué)生完成“立定投籃”和“三步上籃”兩項(xiàng)測試,“立定投籃”和“三步上籃”各有2次投籃機(jī)會(huì),先進(jìn)行“立定投籃”測試,如果合格才能參加“三步上籃”測試.為了節(jié)約時(shí)間,每項(xiàng)測試只需且必須投中一次即為合格.小華同學(xué)“立定投籃”和“三步上籃”的命中率均為.假設(shè)小華不放棄任何一次投籃機(jī)會(huì)且每次投籃是否命中相互獨(dú)立.

(1)求小華同學(xué)兩項(xiàng)測試均合格的概率;

(2)設(shè)測試過程中小華投籃次數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題正確的是( )

A. 命題的否定是:

B. 命題中,若,則的否命題是真命題

C. 如果為真命題,為假命題,則為真命題,為假命題

D. 是函數(shù)的最小正周期為的充分不必要條件

查看答案和解析>>

同步練習(xí)冊答案