20.如圖,網(wǎng)格紙上小正方形的邊長為1,粗實(shí)線畫出的是某幾何體的三視圖,若該幾何體的各個(gè)頂點(diǎn)在某一個(gè)球面上,則該球面的表面積為48π.

分析 判斷幾何體的特征,正方體中的三棱錐,利用正方體的體對(duì)角線得出外接球的半徑求解即可.

解答 解:三棱錐補(bǔ)成正方體,棱長為4,
三棱錐與正方體的外接球是同一球,半徑為R=$\frac{1}{2}×\sqrt{{4}^{2}+{4}^{2}+{4}^{2}}$=2$\sqrt{3}$,
∴該球的表面積為4π×12=48π,
故答案為:48π.

點(diǎn)評(píng) 本題綜合考查了空間思維能力,三視圖的理解,構(gòu)造幾何體解決問題,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在空間直角坐標(biāo)系中,點(diǎn)M(-2,2,1)與點(diǎn)N(4,-3,1-$\sqrt{3}$)的距離是8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)f(x)=$\frac{x}{a(x+2)}$,且f(x)=x有唯一解,f(x1)=$\frac{1}{1003}$,xn+1=f(xn)(n∈N*).
(1)求實(shí)數(shù)a;
(2)求數(shù)列{xn}的通項(xiàng)公式;
(3)若an=$\frac{4}{{x}_{n}}$-4009,數(shù)列b1,b2-b1,b3-b2,…,bn-bn-1是首項(xiàng)為1,公比為$\frac{1}{3}$的等比數(shù)列,記cn=anbn,求{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若x,y滿足$\left\{\begin{array}{l}{1<x<6}\\{2<y<8}\end{array}\right.$,則$\frac{x}{y}$的取值范圍是$(\frac{1}{8},3)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.某三棱錐的三視圖如圖所示,該三棱錐的體積是( 。
A.$\frac{4}{3}$B.$\frac{8}{3}$C.4D.$6+2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知定義在R上的奇函數(shù)f(x)在[0,+∞)上遞減,若f(x3-2x+a)<f(x+1)對(duì)x∈[-1,2]恒成立,則a的取值范圍為(  )
A.(-3,+∞)B.(-∞,-3)C.(3,+∞)D.(-∞,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.求值:$sin[{arccos({-\frac{2}{3}})}]$=$\frac{\sqrt{5}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.正實(shí)數(shù)x,y滿足2x+y=2,則$x+\sqrt{{x^2}+{y^2}}$的最小值$\frac{8}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右頂點(diǎn)分別為A、B,且長軸長為8,T為橢圓上一點(diǎn),直線TA、TB的斜率之積為-$\frac{3}{4}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)O為原點(diǎn),過點(diǎn)M(0,2)的動(dòng)直線與橢圓C交于P、Q兩點(diǎn),求$\overrightarrow{OP}$•$\overrightarrow{OQ}$+$\overrightarrow{MP}$•$\overrightarrow{MQ}$的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案