解:
(Ⅰ)證明:連接CH,∵AC=AH,AK=AE,∴四邊形CHEK為等腰梯形,
注意到等腰梯形的對角互補(bǔ),
故C,H,E,K四點(diǎn)共圓,(3分)
同理C,E,H,M四點(diǎn)共圓,
即E,H,M,K均在點(diǎn)C,E,H所確定的圓上,證畢.(5分)
(Ⅱ)連接EM,
由(1)得E,H,M,C,K五點(diǎn)共圓,(7分)∵CEHM為等腰梯形,∴EM=HC,
故∠MKE=∠CEH,
由KE=EH可得∠KME=∠ECH,
故△MKE≌△CEH,
即KM=EC=3為所求.(10分)
分析:(Ⅰ)先由AC=AH,AK=AE得四邊形CHEK為等腰梯形,利用等腰梯形的對角互補(bǔ)可得C,H,E,K四點(diǎn)共圓;同理C,E,H,M四點(diǎn)共圓,即可得E,H,M,K均在點(diǎn)C,E,H所確定的圓上.
(Ⅱ)先由(1)得E,H,M,C,K五點(diǎn)共圓,再利用CEHM為等腰梯形得EM=HC,以及由KE=EH可得∠KME=∠ECH,推得△MKE≌△CEH,即可得線段KM的長.
點(diǎn)評:本題第一問考查四點(diǎn)共圓.證明四點(diǎn)共圓的常用方法有:對角互補(bǔ);外角等于內(nèi)對角;證明四點(diǎn)在某三點(diǎn)確定的圓上等等.本題用的是方法三.