精英家教網 > 高中數學 > 題目詳情

極坐標方程化為直角坐標方程是(    )

A.            B.     

C.            D.

 

【答案】

A

【解析】略

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

⊙O1和⊙O2的極坐標方程分別為ρ=4cosθ,ρ=-4sinθ.
(1)⊙O1和⊙O2的極坐標方程化為直角坐標方程;
(2)求經過⊙O1和⊙O2交點的直線的直角坐標方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知點P(ρ,θ)是圓C:ρ-2sinθ=0上的動點.
(1)將曲線的極坐標方程化為直角坐標方程,并求圓心的極坐標;
(2)若P(x,y)為圓C上的一個動點,求2x+y的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(1)選修4-2:矩陣與變換
二階矩陣M對應的變換將點(1,-1)與(-2,1)分別變換成點(-1,-1)與(0,-2).
(Ⅰ)求矩陣M的逆矩陣M-1
(Ⅱ)設直線l在變換M作用下得到了直線m:2x-y=4,求l的方程.
(2)選修4-4:坐標系與參數方程
已知直線的極坐標方程為ρsin(θ+
π
4
)=
2
2
,圓M的參數方程為
x=2cosθ
y=-2+2sinθ
(其中θ為參數).
(Ⅰ)將直線的極坐標方程化為直角坐標方程;
(Ⅱ)求圓M上的點到直線的距離的最小值.
(3)選修4一5:不等式選講
已知函數f(x)=|x-1|+|x+3|.
(Ⅰ)求x的取值范圍,使f(x)為常數函數;
(Ⅱ)若關于x的不等式f(x)-a≤0有解,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

選修4-4:坐標系與參數方程:
已知直線l的參數方程:
x=t
y=1+2t
(t為參數)和圓C的極坐標方程:ρ=2
2
sin(θ+
π
4
)

(1)將直線l的參數方程化為普通方程,圓C的極坐標方程化為直角坐標方程;
(2)若平面直角坐標系橫軸的非負半軸與極坐標系的極軸重合,試判斷直線l和圓C的位置關系.

查看答案和解析>>

科目:高中數學 來源: 題型:

選做題:坐標系與參數方程
已知直線l的參數方程:
x=1+
1
2
t
y=-4+
3
2
t
(t為參數)和圓C的極坐標方程:ρ=2
2
cos(θ+
π
4
)

(1)將直線l的參數方程化為普通方程;將圓C的極坐標方程化為直角坐標方程,并寫出圓心的極坐標.
(2)試判定直線l和圓C的位置關系.

查看答案和解析>>

同步練習冊答案