已知向量a=(1,1,0),b=(-1,0,2).

(1)求與向量3a+2b同向的單位向量;

(2)確定實(shí)數(shù)k,使ka-b與2a+b互相垂直.

解析:(1)令所求單位向量為e1,

3a+2b=(1,3,4),

∴設(shè)e1=k1(1,3,4).又∵|e1|=1,得k1=,∴e1=(,,).

(2)∵|a|2=2,|b|2=5,a·b=-1,又(ka-b)⊥(2a+b),

∴(ka-b)·(2a+b)=4k-k+2-5=0.∴k=1.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(1,
3
)
,
b
=(-2,0).
(Ⅰ) 求向量
a
-
b
的坐標(biāo)以及
a
-
b
a
的夾角;
(Ⅱ)當(dāng)t∈[-1,1]時(shí),求|
a
-t
b
|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(1,n),
b
=(-1,n),若
a
b
垂直,則n=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(1,3),
b
=(-2,1),
c
=(3,2).若向量
c
與向量k
a
+
b
共線,則實(shí)數(shù)k=
-1
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(2cosx,2sinx),
b
=(cosx,-
3
cosx)
,函數(shù)f(x)=
a
b
,g(x)=f(
π
6
x+
π
3
)+ax
(a為常數(shù)).
(1)求函數(shù)f(x)圖象的對(duì)稱(chēng)軸方程;
(2)若函數(shù)g(x)的圖象關(guān)于y軸對(duì)稱(chēng),求g(1)+g(2)+g(3)+…+g(2011)的值;
(3)已知對(duì)任意實(shí)數(shù)x1,x2,都有|cos
π
3
x1-cos
π
3
x2|≤
π
3
|x1-x2|
成立,當(dāng)且僅當(dāng)x1=x2時(shí)取“=”.求證:當(dāng)a>
3
時(shí),函數(shù)g(x)在(-∞,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(1,3),
b
=(-2,1),
c
=(3,2).若向量
c
與向量
a
+k
b
共線,則實(shí)數(shù)k=
-1
-1

查看答案和解析>>

同步練習(xí)冊(cè)答案