分析 (Ⅰ)求出f(x)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可;
(Ⅱ)求出x1,x2,令t=$\frac{{x}_{1}}{{x}_{2}}$,得到0<t<1,構(gòu)造函數(shù)$h(t)=t-\frac{1}{t}-2lnt(0<t<1)$,根據(jù)函數(shù)的單調(diào)性求出h(t)<h(1),從而證出結(jié)論.
解答 解:(I)因?yàn)楹瘮?shù)f(x)的定義域?yàn)椋?,+∞).…(2分)
$f'(x)=\frac{1}{x}-1=\frac{1-x}{x}$,.…(3分)
令 $f'(x)=\frac{1}{x}-1=\frac{1-x}{x}>0$,得0<x<1
令 $f'(x)=\frac{1}{x}-1=\frac{1-x}{x}<0$,得x>1.…(4分)
所以函數(shù)f(x)的單調(diào)遞增區(qū)間為(0,1),
函數(shù)f(x)的單調(diào)遞減區(qū)間為(1,+∞).…(5分)
(II)證明:根據(jù)題意,$g(x)=lnx+\frac{1}{2x}-m(x>0)$,
因?yàn)閤1,x2是函數(shù)$g(x)=lnx+\frac{1}{2x}-m$的兩個(gè)零點(diǎn),
所以$ln{x_1}+\frac{1}{{2{x_1}}}-m=0$,$ln{x_2}+\frac{1}{{2{x_2}}}-m=0$.
兩式相減,可得$ln\frac{x_1}{x_2}=\frac{1}{{2{x_2}}}-\frac{1}{{2{x_1}}}$,…(7分)
即$ln\frac{x_1}{x_2}=\frac{{{x_1}-{x_2}}}{{2{x_2}{x_1}}}$,故${x_1}{x_2}=\frac{{{x_1}-{x_2}}}{{2ln\frac{x_1}{x_2}}}$,
那么${x_1}=\frac{{\frac{x_1}{x_2}-1}}{{2ln\frac{x_1}{x_2}}}$,${x_2}=\frac{{1-\frac{x_2}{x_1}}}{{2ln\frac{x_1}{x_2}}}$.
令$t=\frac{x_1}{x_2}$,其中0<t<1,
則${x_1}+{x_2}=\frac{t-1}{2lnt}+\frac{{1-\frac{1}{t}}}{2lnt}=\frac{{t-\frac{1}{t}}}{2lnt}$.
構(gòu)造函數(shù)$h(t)=t-\frac{1}{t}-2lnt(0<t<1)$,…(10分)
則$h'(t)=\frac{{{{(t-1)}^2}}}{t^2}$.
因?yàn)?<t<1,所以h'(t)>0恒成立,
故h(t)<h(1),即$t-\frac{1}{t}-2lnt<0$,
可知$\frac{{t-\frac{1}{t}}}{2lnt}>1$,故x1+x2>1.…(12分)
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及不等式的證明,函數(shù)的構(gòu)造、換元思想,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=-x2 | B. | f(x)=$\frac{1}{{x}^{2}}$ | C. | f(x)=$\frac{1}{{x}^{3}}$ | D. | f(x)=x3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1對(duì) | B. | 2對(duì) | C. | 3對(duì) | D. | 4對(duì) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\sqrt{2}$,+∞) | B. | ($\sqrt{3}$,+∞) | C. | ($\sqrt{2}$+1,+∞) | D. | ($\sqrt{3}$+1,+∞) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com