已知函數(shù)f(x)=Atan(ωx+φ)(ω>0,|φ|<),y=f(x)的部分圖象如圖所示,則f()=______.
由圖象可知,此正切函數(shù)的半周期等于,即周期為,
∴ω=2.
由2×+φ=kπ,k∈Z,|φ|<,知φ=.
由f(0)=1,知A=1.
因此f(x)=tan(2x+),
故f()=tan(2×)=tan .
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

已知為奇函數(shù),且滿足不等式,則實數(shù)的值為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(2014·大慶模擬)已知向量a=(,cosωx),b=(sinωx,1),函數(shù)f(x)=a·b,且最小正周期為4π.
(1)求ω的值.
(2)設α,β∈,f=,f=-,求sin(α+β)的值.
(3)若x∈[-π,π],求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

既是偶函數(shù)又在區(qū)間上單調遞減的函數(shù)是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

將函數(shù)的圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),所得圖象的函數(shù)解析式是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

①存在α∈(0,)使sin α+cos α=;
②存在區(qū)間(a,b)使y=cos x為減函數(shù)且sin x<0;
③y=tan x在其定義域內(nèi)為增函數(shù);
④y=cos 2x+sin(-x)既有最大、最小值,又是偶函數(shù);
⑤y=|sin 2x+|的最小正周期為π.
以上命題錯誤的為________(填序號).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設函數(shù)(其中>0,),且f(x)的圖象在y軸右側的第一個最高點的橫坐標為
(1)求的值;
(2)如果在區(qū)間的最小值為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知向量, 設函數(shù).
(1)求f (x)的最小正周期.
(2)求f (x)在上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

要得到函數(shù)的圖象,只需將函數(shù)的圖象上所有的點的(  ).
A.橫坐標縮短到原來的倍(縱坐標不變),再向左平行移動個單位長度
B.橫坐標縮短到原來的倍(縱坐標不變),再向右平行移動個單位長度
C.橫坐標伸長到原來的2倍(縱坐標不變),再向左平行移動個單位長度
D.橫坐標伸長到原來的2倍(縱坐標不變),再向右平行移動個單位長度

查看答案和解析>>

同步練習冊答案