設(shè)變量滿足,則的最大值是          .
3

試題分析:由約束條件畫(huà)出可行域如圖所示,則目標(biāo)函數(shù)在點(diǎn)取得最大值, 代入得,故的最大值為.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知不等式log2(ax2-3x+6)>2的解集{x|x<1或x>2}
(1)求a的值;
(2)設(shè)k為常數(shù),求f(x)=
x2+k+a
x2+k
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知x>0,y>0,且x+y=1,則
1
x
+
1
y
的最小值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某公司有價(jià)值a萬(wàn)元的一條生產(chǎn)流水線,要提高該生產(chǎn)流水線的生產(chǎn)能力,就要對(duì)其進(jìn)行技術(shù)改造,改造就需要投入資金,相應(yīng)就要提高生產(chǎn)產(chǎn)品的售價(jià).假設(shè)售價(jià)y萬(wàn)元與技術(shù)改造投入x萬(wàn)元之間的關(guān)系滿足:
①y與a-x和x的乘積成正比;②x=
a
2
時(shí)
y=a2
0≤
x
2(a-x)
≤t
其中t為常數(shù),且t∈[0,1].
(1)設(shè)y=f(x),試求出f(x)的表達(dá)式,并求出y=f(x)的定義域;
(2)求出售價(jià)y的最大值,并求出此時(shí)的技術(shù)改造投入的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

不等式組表示的平面區(qū)域的面積為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知實(shí)數(shù)滿足約束條件,則的最小值為     

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

實(shí)數(shù)x,y滿足,如果目標(biāo)函數(shù)Z=x-y的最小值為-2,則實(shí)數(shù)m的值為( )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知變量x,y滿足約束條件 則的取值范圍是(    )
A.B.C.D.(3,6]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

為保增長(zhǎng)、促發(fā)展,某地計(jì)劃投資甲、乙兩個(gè)項(xiàng)目,根據(jù)市場(chǎng)調(diào)研,知甲項(xiàng)目每投資100萬(wàn)元需要配套電能2萬(wàn)千瓦時(shí),可提供就業(yè)崗位24個(gè),GDP增長(zhǎng)260萬(wàn)元;乙項(xiàng)目每投資100萬(wàn)元需要配套電能4萬(wàn)千瓦時(shí),可提供就業(yè)崗位36個(gè),GDP增長(zhǎng)200萬(wàn)元.已知該地為甲、乙兩個(gè)項(xiàng)目最多可投資3000萬(wàn)元,配套電能100萬(wàn)千瓦時(shí),若要求兩個(gè)項(xiàng)目能提供的就業(yè)崗位不少于840個(gè),問(wèn)如何安排甲、乙兩個(gè)項(xiàng)目的投資額,才能使GDP增長(zhǎng)的最多.

查看答案和解析>>

同步練習(xí)冊(cè)答案