已知函數(shù)f(x)=2cosx(sinx+cosx).
(Ⅰ)求f(
4
)的值;
(Ⅱ)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間.
考點(diǎn):二倍角的正弦,二倍角的余弦,三角函數(shù)的周期性及其求法
專題:三角函數(shù)的求值
分析:(Ⅰ)利用三角恒等變換化簡(jiǎn)函數(shù)的解析式為f(x)=
2
sin(2x+
π
4
)+1,從而求得f(
4
)的值.
(Ⅱ)根據(jù)函數(shù)f(x)=
2
sin(2x+
π
4
)+1,求得它的最小正周期.令2kπ-
π
2
≤2x+
π
4
≤2kπ+
π
2
,k∈Z,求得x的范圍,可得函數(shù)的單調(diào)遞增區(qū)間.
解答: 解:(Ⅰ)∵函數(shù)f(x)=2cosx(sinx+cosx)=sin2x+1+cos2x=
2
sin(2x+
π
4
)+1,
∴f(
4
)=
2
sin(
2
+
π
4
)+1=
2
sin
4
+1=
2
×
2
2
+1=2.
(Ⅱ)∵函數(shù)f(x)=
2
sin(2x+
π
4
)+1,故它的最小正周期為
2
=π.
令2kπ-
π
2
≤2x+
π
4
≤2kπ+
π
2
,k∈Z,求得kπ-
8
≤x≤kπ+
π
8
,
故函數(shù)的單調(diào)遞增區(qū)間為[kπ-
8
,kπ+
π
8
],k∈Z.
點(diǎn)評(píng):本題主要考查三角函數(shù)的恒等變換,三角函數(shù)的周期性和單調(diào)性,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)集P={(x,y)|x,y∈{1,2,3}},從集合P中任取一點(diǎn),縱橫坐標(biāo)和為偶數(shù)的概率是( 。
A、
1
2
B、
1
3
C、
4
9
D、
5
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在一塊耕地上種植一種作物,每季種植成本為1000元,此作物的市場(chǎng)價(jià)格和這塊地上的產(chǎn)量均具有隨機(jī)性,且互不影響,其具體情況如下表:
作物產(chǎn)量(kg)300500
概率0.50.5
作物市場(chǎng)價(jià)格(元/kg)610
概率0.40.6
(Ⅰ)設(shè)X表示在這塊地上種植1季此作物的利潤(rùn),求X的分布列;
(Ⅱ)若在這塊地上連續(xù)3季種植此作物,求這3季中至少有2季的利潤(rùn)不少于2000元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線E:
x2
a2
-
y2
b2
=1(a>0,b>0)的兩條漸近線分別為l1:y=2x,l2:y=-2x.
(1)求雙曲線E的離心率;
(2)如圖,O為坐標(biāo)原點(diǎn),動(dòng)直線l分別交直線l1,l2于A,B兩點(diǎn)(A,B分別在第一、第四象限),且△OAB的面積恒為8,試探究:是否存在總與直線l有且只有一個(gè)公共點(diǎn)的雙曲線E?若存在,求出雙曲線E的方程,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是等差數(shù)列,滿足a1=3,a4=12,數(shù)列{bn}滿足b1=4,b4=20,且{bn-an}為等比數(shù)列.
(Ⅰ)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,F(xiàn)1,F(xiàn)2分別為橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn),頂點(diǎn)B的坐標(biāo)為(0,b),連接BF2并延長(zhǎng)交橢圓于點(diǎn)A,過點(diǎn)A作x軸的垂線交橢圓于另一點(diǎn)C,連接F1C.
(1)若點(diǎn)C的坐標(biāo)為(
4
3
,
1
3
),且BF2=
2
,求橢圓的方程;
(2)若F1C⊥AB,求橢圓離心率e的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)0<θ<
π
2
,向量
a
=(sin2θ,cosθ),
b
=(1,-cosθ),若
a
b
=0,則tanθ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在邊長(zhǎng)為1的正方形中隨機(jī)撒1000粒豆子,有180粒落到陰影部分,據(jù)此估計(jì)陰影部分的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題“?x∈[0,+∞),x3+x≥0”的否定是( 。
A、?x∈(-∞,0),x3+x<0
B、?x∈(-∞,0),x3+x≥0
C、?x0∈[0,+∞),x03+x0<0
D、?x0∈[0,+∞),x03+x0≥0

查看答案和解析>>

同步練習(xí)冊(cè)答案