【題目】某小學(xué)為迎接校運(yùn)動(dòng)會(huì)的到來(lái),在三年級(jí)招募了16名男志愿者和14名女志愿者.調(diào)查發(fā)現(xiàn),男、女志愿者中分別各有10人和6人喜歡運(yùn)動(dòng),其余人員不喜歡運(yùn)動(dòng).

1)根據(jù)以上數(shù)據(jù)完成2×2列聯(lián)表,并說(shuō)明是否有95%的把握認(rèn)為性別與喜歡運(yùn)動(dòng)有關(guān);

喜歡運(yùn)動(dòng)

不喜歡運(yùn)動(dòng)

總計(jì)

總計(jì)

2)如果喜歡運(yùn)動(dòng)的女志愿者中恰有4人懂得醫(yī)療救護(hù),現(xiàn)從喜歡運(yùn)動(dòng)的女志愿者中抽取2名負(fù)責(zé)處理應(yīng)急事件,求抽出的2名志愿者都懂得醫(yī)療救護(hù)的概率.

附:K2

P(K2k0)

0.050

0.025

0.010

0.001

k0

3.841

5.024

6.635

10.828

【答案】(1)答案見解析;(2) .

【解析】試題分析:

(1)由題意首先完成列聯(lián)表,結(jié)合列聯(lián)表計(jì)算觀測(cè)值可得k≈1.1575<3.841,因此,沒有95%的把握認(rèn)為性別與喜歡運(yùn)動(dòng)有關(guān).

(2)由題意可知從這6人中任取2人的情況有15種,其中兩人都懂得醫(yī)療救護(hù)的情況有6種,結(jié)合古典概型計(jì)算公式可得滿足題意的概率值為

試題解析:

(1)

喜歡運(yùn)動(dòng)

不喜歡運(yùn)動(dòng)

總計(jì)

10

6

16

6

8

14

總計(jì)

16

14

30

由已知數(shù)據(jù)可得,

k≈1.1575<3.841,因此,沒有95%的把握認(rèn)為性別與喜歡運(yùn)動(dòng)有關(guān).

(2)喜歡運(yùn)動(dòng)的女志愿者有6人,分別設(shè)為A,BC,DE,F,其中A,BC,D懂得醫(yī)療救護(hù),則從這6人中任取2人的情況有(A,B)(A,C)(A,D)(A,E)(AF),(BC),(BD),(BE),(BF),(CD),(CE),(C,F),(D,E)(D,F)(E,F),共15種,

其中兩人都懂得醫(yī)療救護(hù)的情況有(AB),(A,C),(AD),(BC),(BD),(CD),共6種.

設(shè)抽出的2名志愿者都懂得醫(yī)療救護(hù)為事件A,則P(A)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)是定義域?yàn)?/span>的奇函數(shù),當(dāng).

(Ⅰ)求出函數(shù)上的解析式;

(Ⅱ)在答題卷上畫出函數(shù)的圖象,并根據(jù)圖象寫出的單調(diào)區(qū)間;

(Ⅲ)若關(guān)于的方程有三個(gè)不同的解,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為a的菱形ABCD中,,E,FPAAB的中點(diǎn)。

(1)求證: EF||平面PBC ;

(2)求E到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=ln(1+x).
(1)若曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程為y=g(x),當(dāng)x≥0時(shí),f(x)≤ ,求t的最小值;
(2)當(dāng)n∈N*時(shí),證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線)與軸交于點(diǎn),動(dòng)圓與直線相切,并且與圓相外切,

1)求動(dòng)圓的圓心的軌跡的方程;

2)若過(guò)原點(diǎn)且傾斜角為的直線與曲線交于兩點(diǎn),問(wèn)是否存在以為直徑的圓經(jīng)過(guò)點(diǎn)?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)處取得極小值10,則的值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)若,求函數(shù)的極值;

2)設(shè)函數(shù),求函數(shù)的單調(diào)區(qū)間;

3)若對(duì)內(nèi)任意一個(gè),都有 成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù),.

)求的單調(diào)區(qū)間和極值;

)證明:若存在零點(diǎn),則在區(qū)間上僅有一個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓E: =1(a>b>0),傾斜角為45°的直線與橢圓相交于M、N兩點(diǎn),且線段MN的中點(diǎn)為(﹣1, ).過(guò)橢圓E內(nèi)一點(diǎn)P(1, )的兩條直線分別與橢圓交于點(diǎn)A、C和B、D,且滿足 ,其中λ為實(shí)數(shù).當(dāng)直線AP平行于x軸時(shí),對(duì)應(yīng)的λ=

(1)求橢圓E的方程;
(2)當(dāng)λ變化時(shí),kAB是否為定值?若是,請(qǐng)求出此定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案