【題目】已知P為橢圓 =1上的一個(gè)點(diǎn),M,N分別為圓(x+3)2+y2=1和圓(x﹣3)2+y2=4上的點(diǎn),則|PM|+|PN|的最小值為 .
【答案】7
【解析】解:由橢圓 =1可得a=5,b=4,c=3,因此焦點(diǎn)分別為:F1(﹣3,0),F(xiàn)2(3,0). |PF1|+|PF2|=2a=10.
圓(x+3)2+y2=1的圓心與半徑分別為:F1(﹣3,0),r1=1;
圓(x﹣3)2+y2=4的圓心與半徑分別為:F2(3,0),r2=2.
∵|PM|+r1≥|PF1|,|PN|+r2≥|PF2|.
∴|PM|+|PN|≥|PF1|+|PF2|﹣1﹣2=7.
故答案為:7.
由橢圓 =1可得焦點(diǎn)分別為:F1(﹣3,0),F(xiàn)2(3,0).|PF1|+|PF2|=2a.圓(x+3)2+y2=1的圓心與半徑分別為:F1 , r1=1;圓(x﹣3)2+y2=4的圓心與半徑分別為:F2 , r2=2.利用|PM|+r1≥|PF1|,|PN|+r2≥|PF2|.即可得出.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校100名學(xué)生期中考試語(yǔ)文成績(jī)的頻率分布直方圖如圖所示,其中成績(jī)分組區(qū)間是:[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求圖中a的值;
(2)根據(jù)頻率分布直方圖,估計(jì)這100名學(xué)生語(yǔ)文成績(jī)的平均分;
(3)若這100名學(xué)生語(yǔ)文成績(jī)某些分?jǐn)?shù)段的人數(shù)(x)與數(shù)學(xué)成績(jī)相應(yīng)分?jǐn)?shù)段的人數(shù)(y)之比如表所示,求數(shù)學(xué)成績(jī)?cè)赱50,90)之外的人數(shù).
分?jǐn)?shù)段 | [50,60) | [60,70) | [70,80) | [80,90) |
x:y | 1:1 | 2:1 | 3:4 | 4:5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=,AC=3, BC=2,P是△ABC內(nèi)的一點(diǎn).
(1)若P是等腰直角三角形PBC的直角頂點(diǎn),求PA的長(zhǎng);
(2)若∠BPC=,設(shè)∠PCB=θ,求△PBC的面積S(θ)的解析式,并求S(θ)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知冪函數(shù) 在(0,+∞)上為增函數(shù),g(x)=f(x)+2
(1)求m的值,并確定f(x)的解析式;
(2)對(duì)于任意x∈[1,2],都存在x1 , x2∈[1,2],使得f(x)≤f(x1),g(x)≤g(x2),若f(x1)=g(x2),求實(shí)數(shù)t的值;
(3)若2xh(2x)+λh(x)≥0對(duì)于一切x∈[1,2]成成立,求實(shí)數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=x3﹣3x+5,若關(guān)于x的方程f(x)=a至少有兩個(gè)不同實(shí)根,則a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次購(gòu)物抽獎(jiǎng)活動(dòng)中,假設(shè)某10張券中有一等獎(jiǎng)券1張,可獲價(jià)值50元的獎(jiǎng)品;有二等獎(jiǎng)券3張,每張可獲價(jià)值10元的獎(jiǎng)品;其余6張沒(méi)有獎(jiǎng),某顧客從此10張券中任抽2張,求:
(Ⅰ)該顧客中獎(jiǎng)的概率;
(Ⅱ)該顧客獲得的獎(jiǎng)品總價(jià)值ξ(元)的概率分布列和期望Eξ.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x3﹣3x.
(1)求曲線y=f(x)在點(diǎn)x=2處的切線方程;
(2)若過(guò)點(diǎn)A(1,m)(m≠﹣2)可作曲線y=f(x)的三條切線,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè),又是一個(gè)常數(shù),已知或時(shí), 只有一個(gè)實(shí)根,當(dāng)時(shí), 有三個(gè)相異實(shí)根,給出下列命題:
①和有一個(gè)相同的實(shí)根;
②和有一個(gè)相同的實(shí)根;
③的任一實(shí)根大于的任一實(shí)根;
④的任一實(shí)根小于的任一實(shí)根.
其中正確命題的個(gè)數(shù)為( )
A. 3 B. 2 C. 1 D. 0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x3+bx2+cx的導(dǎo)函數(shù)圖象關(guān)于直線x=2對(duì)稱
(1)求b值;
(2)若f(x)在x=t處取得極小值,記此極小值為g(t),求g(t)的定義域.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com