已知函數(shù)f(x)=aln x+x在區(qū)間[2,3]上單調(diào)遞增,則實(shí)數(shù)a的取值范圍是________.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練優(yōu)化重組卷2練習(xí)卷(解析版) 題型:解答題
已知函數(shù)f(x)=sin2x+sin xcos x,x∈.
(1)求f(x) 的零點(diǎn);
(2)求f(x)的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練x4-1練習(xí)卷(解析版) 題型:填空題
如圖,在直角梯形ABCD中,DC∥AB,CB⊥AB,AB=AD=a,CD=,點(diǎn)E,F分別為線段AB,AD的中點(diǎn),則EF=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練5練習(xí)卷(解析版) 題型:填空題
已知函數(shù)f(x)=x-,g(x)=x2-2ax+4,若任意x1∈[0,1],存在x2∈[1,2],使f(x1)≥g(x2),則實(shí)數(shù)a的取值范圍是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練5練習(xí)卷(解析版) 題型:選擇題
已知函數(shù)f(x)=x3-2x2+3m,x∈[0,+∞),若f(x)+5≥0恒成立,則實(shí)數(shù)m的取值范圍是( )
A. B.
C.(-∞,2] D.(-∞,2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練4練習(xí)卷(解析版) 題型:選擇題
若S1=x2dx,S2=dx,S3=exdx,則S1,S2,S3的大小關(guān)系為( ).
A.S1<S2<S3 B.S2<S1<S3
C.S2<S3<S1 D.S3<S2<S1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練3練習(xí)卷(解析版) 題型:填空題
已知f(x)是定義域?yàn)?/span>R的偶函數(shù),當(dāng)x≥0時(shí),f(x)=x2-4x,那么,不等式f(x+2)<5的解集是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練1練習(xí)卷(解析版) 題型:解答題
已知函數(shù)f(x)=ex-e-x(x∈R且e為自然對(duì)數(shù)的底數(shù)).
(1)判斷函數(shù)f(x)的奇偶性與單調(diào)性;
(2)是否存在實(shí)數(shù)t,使不等式f(x-t)+f(x2-t2)≥0對(duì)一切x都成立?若存在,求出t;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)5-2空間向量與立體幾何練習(xí)卷(解析版) 題型:解答題
如圖所示的長(zhǎng)方體ABCD-A1B1C1D1中,底面ABCD是邊長(zhǎng)為2的正方形,O為AC與BD的交點(diǎn),BB1=,M是線段B1D1的中點(diǎn).
(1)求證:BM∥平面D1AC;
(2)求證:D1O⊥平面AB1C;
(3)求二面角B-AB1-C的大。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com