如圖,線段AB=8,點(diǎn)C在線段AB上,且AC=2,P為線段CB上一動(dòng)點(diǎn),點(diǎn)A繞著C旋轉(zhuǎn)后與點(diǎn)B繞點(diǎn)P旋轉(zhuǎn)后重合于點(diǎn)D,設(shè)CP=x,△CPD的面積為f(x).求f(x)的最大值(  ).

A.                             B.2

C.3                                 D.

 

【答案】

A

【解析】

試題分析:利用三角形的構(gòu)成條件,建立不等式,可求x的取值范圍;三角形的周長(zhǎng)是一個(gè)定值8,故其面積可用海倫公式表示出來(lái),再利用基本不等式,即可求f(x)的最大值.解:(1)由題意,DC=2,CP=x,DP=6-x,根據(jù)三角形的構(gòu)成條件可得x+6-x>2, 2+6-x>x, 2+x>6-x,解得2<x<4;三角形的周長(zhǎng)是一個(gè)定值8,故其面積可用海倫公式表示出來(lái),即f(x)= 

當(dāng)且僅當(dāng)4-x=-2+x,即x=3時(shí),f(x)的最大值為,故選A.

考點(diǎn):函數(shù)類型

點(diǎn)評(píng):本題考查根據(jù)實(shí)際問(wèn)題選擇函數(shù)類型,本題中求函數(shù)解析式用到了海倫公式,

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,線段AB=8,點(diǎn)C在線段AB上,且AC=2,P為線段CB上一動(dòng)點(diǎn),點(diǎn)A繞點(diǎn)C旋轉(zhuǎn)后與點(diǎn)B繞點(diǎn)P旋轉(zhuǎn)后重合于點(diǎn)D.設(shè)CP=x,△CPD的面積為f(x).則f(x)的定義域?yàn)?!--BA-->
 
;f(x)的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,線段AB=8,點(diǎn)C在線段AB上,且AC=2,P為線段CB上一動(dòng)點(diǎn),點(diǎn)A繞點(diǎn)C旋轉(zhuǎn)后與點(diǎn)B繞點(diǎn)P旋轉(zhuǎn)后重合于點(diǎn)D.設(shè)CP=x,△CPD的面積為f(x).則f(x)的定義域?yàn)?!--BA-->
 
; f′(x)的零點(diǎn)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,線段AB=8,點(diǎn)C在線段AB上,且AC=2,P為線段BC上的一動(dòng)  點(diǎn),點(diǎn)A繞點(diǎn)C旋轉(zhuǎn)后與點(diǎn)B繞點(diǎn)P旋轉(zhuǎn)后重合于點(diǎn)D,設(shè)CP=x,△PCD的面積為f(x),則f(x)的最大值為
2
2
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,線段AB=8,點(diǎn)C在線段AB上,且AC=2,P為線段CB上一動(dòng)點(diǎn),點(diǎn)A繞著C旋轉(zhuǎn)后與點(diǎn)B繞點(diǎn)P旋轉(zhuǎn)后重合于點(diǎn)D,設(shè)CP=x,△CPD的面積為f(x).
(1)求x的取值范圍;
(2)求f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,線段AB=8,點(diǎn)C在線段AB上,且AC=2,P為線段CB上一動(dòng)點(diǎn),點(diǎn)A繞點(diǎn)C旋轉(zhuǎn)后與點(diǎn)B繞點(diǎn)P旋轉(zhuǎn)后重合于點(diǎn)D.設(shè)CP=x,△CPD的面積為f(x).則f(x)的最大值為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案