【題目】在圓周上依次有個點,今隨機地選取其中個點為頂點作凸邊形,已知選取與否的可能性是相同的,試求對每個,邊形的兩個相鄰頂點(規(guī)定)之間至少有中的個點的概率,其中,是給定的一組正整數(shù).
【答案】
【解析】
設(shè)是合乎條件的凸邊形,令,
設(shè)中與之間有個不屬于,規(guī)定,
則,其中,,
于是, ①
其中,.
這樣,每個組合與方程①的整數(shù)解建立了一一對應(yīng),而且方程①的整數(shù)解的個數(shù)為.
所以,符合條件的組合有個.
將每一個組合排在圓周上,有種不同的排法(每個頂點輪換一次),但每個凸邊形有個頂點,每個點作為以相應(yīng)的間隔(不定方程的解)計算一次,從而,凸邊形被計算次(比如三角形,以點分別作為時,其分別在間隔方式2、3、4、3、4、2、4、2、3中各計算一次),于是,所以符合條件的凸邊形有個.
又從圓周上個點中取個點有種方法,
故所求的概率為:,其中,.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(1)函數(shù)在處的切線與直線垂直,求實數(shù)的值;
(2)若函數(shù)在定義域上有兩個極值點,且.
①求實數(shù)的取值范圍;
②求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有件產(chǎn)品,其中件是次品,其余都是合格品,現(xiàn)不放回的從中依次抽件.求:(1)第一次抽到次品的概率;
(2)第一次和第二次都抽到次品的概率;
(3)在第一次抽到次品的條件下,第二次抽到次品的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間和的極值;
(2)對于任意的,,都有,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】個人在某個節(jié)日期間互通電話問候,已知其中每個人至多打通了三個朋友家的電話,任何兩個人之間至多進行一次通話,且任何三個人中至少有兩人,其中一個人打通了另一個人家里的電話,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),且),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)寫出曲線和直線的直角坐標(biāo)方程;
(2)若直線與軸交點記為,與曲線交于,兩點,Q在x軸下方,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從1~2010中選出總和為1006779的1005個數(shù),且這1005個數(shù)中任意兩數(shù)之和都不等于2011.
(1)證明: 為定值;
(2)當(dāng)取最小值時,求 中所有小于1005的數(shù)之和。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱錐中,平面,,,AP=AD=2AB=2BC,點在棱上.
(Ⅰ)求證:;
(Ⅱ)當(dāng)平面時,求直線與平面所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com