已知函數(shù)f(x)=數(shù)學(xué)公式-(數(shù)學(xué)公式x,實(shí)數(shù)a,b,c滿足f(a)f(b)f(c)<0,(0<a<b<c).若實(shí)數(shù)xo是函數(shù)f(x)的零點(diǎn),那么下列不等式中,不可能成立的是


  1. A.
    xo<a
  2. B.
    xo>b
  3. C.
    xo<c
  4. D.
    xo>c
A
分析:已知函數(shù)函數(shù)f(x)=-(x,定義域{x|x≥0},判斷其單調(diào)性,進(jìn)而可得f(a)、f(b)、f(c)中一項(xiàng)為負(fù)的、兩項(xiàng)為正的;或者三項(xiàng)都是負(fù)的,分類討論分別求得可能成立選項(xiàng),從而得到答案;
解答:∵函數(shù)f(x)=-(x,f(x)為增函數(shù),
實(shí)數(shù)a,b,c滿足f(a)f(b)f(c)<0,(0<a<b<c).
∴f(a)<f(b)<f(c)
∵f(c)f(b)f(a)<0,
∴f(a)、f(b)、f(c)中一項(xiàng)為負(fù)的、兩項(xiàng)為正的;或者三項(xiàng)都是負(fù)的
即f(a)<0,0<f(b)<f(c)或f(a)<f(b)<f(c)<0.
由于實(shí)數(shù)x0是函數(shù)y=f(x)的一個(gè)零點(diǎn),
當(dāng)f(a)<0,0<f(b)<f(c)時(shí),a<x0<b<c,或a<b<x0<c此時(shí)成立故B,C正確.
當(dāng)f(a)<f(b)<f(c)<0時(shí),x0>c,此時(shí)D成立.
綜上可得,A不正確,故選A;
點(diǎn)評(píng):本題主要考查函數(shù)的零點(diǎn)的定義,判斷函數(shù)的零點(diǎn)所在的區(qū)間的方法,體現(xiàn)了分類討論的數(shù)學(xué)思想,屬于中檔題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函數(shù)f(x)的最小正周期;
(2)若函數(shù)y=f(2x+
π
4
)
的圖象關(guān)于直線x=
π
6
對(duì)稱,求φ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)為定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,時(shí)f(x)的表達(dá)式;
(2)若關(guān)于x的方程f(x)-a=o有解,求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=aInx-ax,(a∈R)
(1)求f(x)的單調(diào)遞增區(qū)間;(文科可參考公式:(Inx)=
1
x

(2)若f′(2)=1,記函數(shù)g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在區(qū)間(1,3)上總不單調(diào),求實(shí)數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點(diǎn)A(1,f(1))處的切線l與直線3x-y+2=0平行,若數(shù)列{
1
f(n)
}
的前n項(xiàng)和為Sn,則S2010的值為( 。
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是定義在區(qū)間(-1,1)上的奇函數(shù),且對(duì)于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案