已知橢圓C的短軸長(zhǎng)為6,離心率為
4
5
,則橢圓C的焦點(diǎn)F到長(zhǎng)軸的一個(gè)端點(diǎn)的距離為( 。
A、9B、1
C、1或9D、以上都不對(duì)
考點(diǎn):橢圓的簡(jiǎn)單性質(zhì)
專(zhuān)題:計(jì)算題,圓錐曲線(xiàn)的定義、性質(zhì)與方程
分析:利用橢圓C的短軸長(zhǎng)為6,離心率為
4
5
,求出幾何量,即可得到結(jié)論.
解答: 解:由題意,b=3,
c
a
=
4
5

又∵b=
a2-c2
,解得a=5,c=4
∴橢圓C的焦點(diǎn)F到長(zhǎng)軸的一個(gè)端點(diǎn)的距離為5+4=9或5-4=1
故選:C.
點(diǎn)評(píng):本題考查橢圓的幾何性質(zhì),考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,正方體ABCD-A1B1C1D1中,則AD1與B1C所成角的大小為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)的導(dǎo)函數(shù)f′(x)的圖象如圖所示,那么下面說(shuō)法正確的是( 。
A、在(-3,1)內(nèi)f(x)是增函數(shù)
B、在(1,3)內(nèi)f(x)是減函數(shù)
C、在(4,5)內(nèi)f(x)是增函數(shù)
D、在x=2時(shí),f(x)取得極小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知樣本7,10,14,8,7,12,11,10,8,10,13,10,8,11,8,9,12,9,13,20,那么這組數(shù)據(jù)落在8.5~11.5的頻率為( 。
A、0.5B、0.4
C、0.3D、0.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),且滿(mǎn)足f′(x)>f(x),則下列結(jié)論正確的是( 。
A、f(1)>ef(0)
B、f(1)<ef(0)
C、f(1)>f(0)
D、f(1)<f(0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)△ABC的三個(gè)內(nèi)角A,B,C所對(duì)的邊分別是a,b,c,已知A=60°,a=
6
,c=
5
,則b=(  )
A、
3-
5
2
B、
3+
5
2
C、2
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=sin(2x-
π
6
),則下列判斷正確的是( 。
A、此函數(shù)的最小周期為2π,其圖象的一個(gè)對(duì)稱(chēng)中心是(
π
12
,0)
B、此函數(shù)的最小周期為π,其圖象的一個(gè)對(duì)稱(chēng)中心是(
π
12
,0)
C、此函數(shù)的最小周期為2π,其圖象的一個(gè)對(duì)稱(chēng)中心是(
π
6
,0)
D、此函數(shù)的最小周期為π,其圖象的一個(gè)對(duì)稱(chēng)中心是(
π
6
,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
lnx,x>0
x+2,x<0
,則f(f(-1))=(  )
A、1B、0C、-1D、e

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a∈R,命題p:“?x∈[1,2],x2-a≥0”,命題q:“?x∈R,x2+2ax+2-a=0”.
(1)若命題p為真命題,求實(shí)數(shù)a的取值范圍;
(2)若命題“p∨q”為真命題,命題“p∧q”為假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案