【題目】已知函數(shù),

(1)當(dāng)x0時(shí),fx)≤hx)恒成立,求a的取值范圍;

(2)當(dāng)x0時(shí),研究函數(shù)Fx)=hx)﹣gx)的零點(diǎn)個(gè)數(shù);

(3)求證:(參考數(shù)據(jù):ln1.1≈0.0953).

【答案】(1);(2)見解析;(3)見解析

【解析】

1)令H(x)=h(x)﹣f(x)=ex﹣1﹣aln(x+1)(x≥0),求得導(dǎo)數(shù),討論a>1a≤1,判斷導(dǎo)數(shù)的符號(hào),由恒成立思想可得a的范圍;(2)求得F(x)=h(x)﹣g(x)的導(dǎo)數(shù)和二階導(dǎo)數(shù),判斷F'(x)的單調(diào)性,討論a≤﹣1,a>﹣1,F(xiàn)(x)的單調(diào)性和零點(diǎn)個(gè)數(shù);(3)由(1)知,當(dāng)a=1時(shí),ex>1+ln(x+1)對(duì)x>0恒成立,令;由(2)知,當(dāng)a=﹣1時(shí),對(duì)x<0恒成立,令,結(jié)合條件,即可得證.

(Ⅰ)解:令H(x)=h(x)﹣f(x)=ex﹣1﹣aln(x+1)(x≥0),

,

①若a≤1,則,H'(x)≥0,H(x)在[0,+∞)遞增,

H(x)≥H(0)=0,即f(x)≤h(x)在[0,+∞)恒成立,滿足,所以a≤1;

②若a>1,H′(x)=ex在[0,+∞)遞增,H'(x)≥H'(0)=1﹣a,且1﹣a<0,

且x→+∞時(shí),H'(x)→+∞,則x0∈(0,+∞),

使H'(x0)=0進(jìn)而H(x)在[0,x0)遞減,在(x0,+∞)遞增,

所以當(dāng)x∈(0,x0)時(shí)H(x)<H(0)=0,

即當(dāng)x∈(0,x0)時(shí),f(x)>h(x),不滿足題意,舍去;

綜合①,②知a的取值范圍為(﹣∞,1].

(Ⅱ)解:依題意得,則F'(x)=ex﹣x2+a,

則F'(x)=ex﹣2x>0在(﹣∞,0)上恒成立,故F'(x)=ex﹣x2+a在(﹣∞,0)遞增,

所以F'(x)<F'(0)=1+a,且x→﹣∞時(shí),F(xiàn)'(x)→﹣∞;

①若1+a≤0,即a≤﹣1,則F'(x)<F'(0)=1+a≤0,

故F(x)在(﹣∞,0)遞減,所以F(x)>F(0)=0,F(xiàn)(x)在(﹣∞,0)無零點(diǎn);

②若1+a>0,即a>﹣1,則使

進(jìn)而F(x)在遞減,在遞增,,

且x→﹣∞時(shí),,

F(x)在上有一個(gè)零點(diǎn),在無零點(diǎn),

故F(x)在(﹣∞,0)有一個(gè)零點(diǎn).

綜合①②,當(dāng)a≤﹣1時(shí)無零點(diǎn);當(dāng)a>﹣1時(shí)有一個(gè)零點(diǎn).

(Ⅲ)證明:由(Ⅰ)知,當(dāng)a=1時(shí),ex>1+ln(x+1)對(duì)x>0恒成立,

,則

由(Ⅱ)知,當(dāng)a=﹣1時(shí),span>對(duì)x<0恒成立,

,則,所以;

故有

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】端午節(jié)(每年農(nóng)歷五月初五),是中國傳統(tǒng)節(jié)日,有吃粽子的習(xí)俗.某超市在端午節(jié)這一天,每售出kg粽子獲利潤元,未售出的粽子每kg虧損.根據(jù)歷史資料,得到銷售情況與市場(chǎng)需求量的頻率分布表,如下表所示.該超市為今年的端午節(jié)預(yù)購進(jìn)了kg粽子.(單位:kg)表示今年的市場(chǎng)需求量,(單位:元)表示今年的利潤.

市場(chǎng)需求量(kg

頻率

0.1

0.2

0.3

0.25

0.15

1)將表示為的函數(shù);

2)在頻率分布表的市場(chǎng)需求量分組中,以各組的區(qū)間中間值代表該組的各個(gè)值,需求量落入該區(qū)間的頻率作為需求量取該區(qū)間中間值的概率(例如:若需求量,則取,且的概率等于需求量落入的頻率),求的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定直線,定點(diǎn),以坐標(biāo)軸為對(duì)稱軸的橢圓過點(diǎn)且與相切.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)橢圓的弦的中點(diǎn)分別為,若平行于,則斜率之和是否為定值? 若是定值請(qǐng)求出該定值若不是定值請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地為改善旅游環(huán)境進(jìn)行景點(diǎn)改造.如圖,將兩條平行觀光道l1l2通過一段拋物線形狀的棧道AB連通(道路不計(jì)寬度),l1l2所在直線的距離為0.5(百米),對(duì)岸堤岸線l3平行于觀光道且與l2相距1.5(百米)(其中A為拋物線的頂點(diǎn),拋物線的對(duì)稱軸垂直于l3,且交l3M),在堤岸線l3上的EF兩處建造建筑物,其中E,FM的距離為1(百米),且F恰在B的正對(duì)岸(即BFl3).

1)在圖②中建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,并求棧道AB的方程;

2)游客(視為點(diǎn)P)在棧道AB的何處時(shí),觀測(cè)EF的視角(EPF)最大?請(qǐng)?jiān)冢?/span>1)的坐標(biāo)系中,寫出觀測(cè)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)討論函數(shù)的單調(diào)性;

2)當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓()的離心率為,以的短軸為直徑的圓與直線相切.

1)求的方程;

2)直線,兩點(diǎn),且.已知上存在點(diǎn),使得是以為頂角的等腰直角三角形,若在直線的右下方,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,,過點(diǎn)的直線與橢圓交于兩點(diǎn),延長交橢圓于點(diǎn),的周長為8.

(1)求的離心率及方程;

(2)試問:是否存在定點(diǎn),使得為定值?若存在,求;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的單調(diào)性;

2)試求函數(shù)零點(diǎn)的個(gè)數(shù),并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某房地產(chǎn)開發(fā)商在其開發(fā)的某小區(qū)前修建了一個(gè)弓形景觀湖.如圖,該弓形所在的圓是以為直徑的圓,且米,景觀湖邊界平行且它們間的距離為米.開發(fā)商計(jì)劃從點(diǎn)出發(fā)建一座景觀橋(假定建成的景觀橋的橋面與地面和水面均平行),橋面在湖面上的部分記作.設(shè)

1)用表示線段并確定的范圍;

2)為了使小區(qū)居民可以充分地欣賞湖景,所以要將的長度設(shè)計(jì)到最長,求的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案