已知函數(shù) (為常數(shù))是實(shí)數(shù)集R上的奇函數(shù),函數(shù)是區(qū)間[-1,1]上的減函數(shù)
(I)求的值;
(II)求的取值范圍;
(III)若在上恒成立,求的取值范圍。
(1) ="0." (2)
解析試題分析:解:(Ⅰ)函數(shù)是實(shí)數(shù)集R上的奇函數(shù),
所以=0. 3分
(Ⅱ)是區(qū)間[-1,1]上的減函數(shù)
在[-1,1]上恒成立
. 5分
又,
.
. 8分
(Ⅲ)在區(qū)間[-1,1]上單調(diào)遞減,
.
只需.
恒成立. 10分
令,
則 12分
而恒成立,
. 14分
考點(diǎn):本試題考查了導(dǎo)數(shù)的知識(shí)。
點(diǎn)評(píng):對(duì)于導(dǎo)數(shù)在函數(shù)中的作用,主要是解決函數(shù)的單調(diào)性的運(yùn)用,同時(shí)要結(jié)合不等式恒成立,分離參數(shù)發(fā),構(gòu)造新函數(shù),通過(guò)函數(shù)的最值來(lái)分析得到參數(shù)的取值范圍問(wèn)題,這是高考的一個(gè)熱點(diǎn),要加以關(guān)注。而這類問(wèn)題的處理方法既可以分離也可以不分離來(lái)做,因題而異。屬于中檔題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分14分)
設(shè)函數(shù).
(1)求函數(shù)的單調(diào)增區(qū)間;
(2)若不等式在恒成立,求實(shí)數(shù)m的取值范圍.
(3)若對(duì)任意的,總存在,使不等式成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分14分)已知函數(shù) (R).
(1)若,求函數(shù)的極值;
(2)是否存在實(shí)數(shù)使得函數(shù)在區(qū)間上有兩個(gè)零點(diǎn),若存在,求出的取值范圍;若不存在,說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)。
(1)若不等式對(duì)任意的實(shí)數(shù)恒成立,求實(shí)數(shù)的取值范圍;
(2)設(shè),且在上單調(diào)遞增,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
已知函數(shù)
(1)是否存在實(shí)數(shù),使得函數(shù)的定義域、值域都是,若存在,則求出的值,若不存在,請(qǐng)說(shuō)明理由.
(2)若存在實(shí)數(shù),使得函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/23/9/epuwj1.png" style="vertical-align:middle;" />時(shí),值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/da/1/r0vir1.png" style="vertical-align:middle;" /> (),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知實(shí)數(shù),函數(shù).
(I)討論在上的奇偶性;
(II)求函數(shù)的單調(diào)區(qū)間;
(III)求函數(shù)在閉區(qū)間上的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(Ⅰ)若曲線在和處的切線互相平行,求的值;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)設(shè),若對(duì)任意,均存在,使得,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
若函數(shù)為奇函數(shù),當(dāng)時(shí),(如圖).
(Ⅰ)求函數(shù)的表達(dá)式,并補(bǔ)齊函數(shù)的圖象;
(Ⅱ)用定義證明:函數(shù)在區(qū)間上單調(diào)遞增.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分12分)
把邊長(zhǎng)為的等邊三角形鐵皮剪去三個(gè)相同的四邊形(如圖陰影部分)后,用剩余部分做成一個(gè)無(wú)蓋的正三棱柱形容器(不計(jì)接縫),設(shè)容器的高為,容積為.
(Ⅰ)寫出函數(shù)的解析式,并求出函數(shù)的定義域;
(Ⅱ)求當(dāng)x為多少時(shí),容器的容積最大?并求出最大容積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com