10.若存在非零的實(shí)數(shù)a,使得f(x)=f(a-x)對(duì)定義域上任意的x恒成立,則函數(shù)f(x)可能是( 。
A.f(x)=x2-2x+1B.f(x)=x2-1C.f(x)=2xD.f(x)=2x+1

分析 利用已知條件判斷函數(shù)有對(duì)稱(chēng)軸,集合a不為0,推出選項(xiàng)即可.

解答 解:存在非零的實(shí)數(shù)a,使得f(x)=f(a-x)對(duì)定義域上任意的x恒成立,
可得函數(shù)的對(duì)稱(chēng)軸為:x=$\frac{a}{2}$≠0.
顯然f(x)=x2-2x+1,滿(mǎn)足題意;f(x)=x2-1;f(x)=2x,f(x)=2x+1不滿(mǎn)足題意,
故選:A.

點(diǎn)評(píng) 本題考查基本函數(shù)的簡(jiǎn)單性質(zhì)的應(yīng)用,考查計(jì)算與判斷能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知向量$\overrightarrow{a}$,$\overrightarrow$滿(mǎn)足$\overrightarrow{a}$•$\overrightarrow$=0,|$\overrightarrow{a}$|=1.|$\overrightarrow$|=2,則|$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖,在長(zhǎng)方體ABCD-A1B1C1D1中,AD=AA1=1,AB=2.
(I)求異面直線AC與B1D所成角的余弦值;
(Ⅱ)設(shè)M是線段B1D上一點(diǎn),在長(zhǎng)方體ABCD-A1B1C1D1內(nèi)隨機(jī)選取一點(diǎn),若該點(diǎn)取自于三棱錐M-ACD內(nèi)的概率為$\frac{1}{18}$,試確定點(diǎn)M的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=x|x-a|
(1)若函數(shù)y=f(x)+x在R上是增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)若對(duì)任意x∈[1,2]時(shí),函數(shù)f(x)的圖象恒在y=1圖象的下方,求實(shí)數(shù)a的取值范圍;
(3)設(shè)a≥2時(shí),求f(x)在區(qū)間[2,4]內(nèi)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知A={x|2x>1},B={x|log3(x+1)<1}.
(1)求A∪B及(∁RA)∩B;
(2)若集合C={x|x<a},滿(mǎn)足B∪C=C,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.設(shè)$f(x)=\frac{2}{{{2^x}+1}}+m,x∈R,m$為常數(shù).
(1)若f(x)為奇函數(shù),求實(shí)數(shù)m的值;
(2)判斷f(x)在R上的單調(diào)性,并用單調(diào)性的定義予以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.若函數(shù)$f(x)=1+\sqrt{x}$,$g(x)=\sqrt{1-x}-\sqrt{x}$,則f(x)+g(x)=1+$\sqrt{1-x}$,0≤x≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.設(shè)常數(shù)b∈R.若函數(shù)$y=x+\frac{2^b}{x}(x>0)$在(0,4]上是減函數(shù),在[4,+∞)上是增函數(shù),則b=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過(guò)點(diǎn)M(2,1),且離心率為$\frac{\sqrt{3}}{2}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)A(0,-1),直線l與橢圓C交于P,Q兩點(diǎn),且|AP|=|AQ|,當(dāng)△OPQ(O為坐標(biāo)原點(diǎn))的面積S最大時(shí),求直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案