已知函數(shù) f(x)=log3(3x-1),
(1)求函數(shù)f(x)的定義域;
(2)求證函數(shù)f(x)在(0,+∞)內(nèi)單調(diào)遞增.
(3)若f-1(x)是函數(shù)f(x)的反函數(shù),設(shè)F(x)=f-1(2x)-f(x),求函數(shù)F(x)的最小值及對(duì)應(yīng)的x值.
【答案】分析:(1)利用真數(shù)大于0,結(jié)合指數(shù)函數(shù)的單調(diào)性可求;
(2)用單調(diào)性定義證明,先任取兩個(gè)變量,且界定大小,再作差變形,通過(guò)分析,與零比較,要注意變形要到位.
(3)先求反函數(shù),再表達(dá)出F(x)=f-1(2x)-f(x),利用基本不等式可求函數(shù)的最小值.
解答:解:(1)函數(shù) f(x)=log3(3x-1),得:3x-1>0,∴x>0
∴f(x)的定義域 是(0,+∞).
(2)設(shè)在(0,+∞)上任取x1<x2,則f(x2)-f(x1)=
由y=3x在定義域(0,+∞)內(nèi)單調(diào)遞增得:,∴,∴f(x2)-f(x1)>0
∴函數(shù)f(x)在(0,+∞)內(nèi)單調(diào)遞增(3分)
(3)由 f(x)=log3(3x-1),得:f-1(x)=log3(3x+1),∴F(x)=f-1(2x)-f(x)=

當(dāng)x=時(shí),F(xiàn)(x)最小值為
點(diǎn)評(píng):本題的考點(diǎn)是函數(shù)的單調(diào)性德判斷及證明,主要考查了反函數(shù)、函數(shù)的值域以及函數(shù)與不等式相綜合的問(wèn)題,考查函數(shù)與方程的綜合運(yùn)用,主要涉及了用單調(diào)性的定義證明函數(shù)的單調(diào)性以及構(gòu)造函數(shù)研究函數(shù)的性質(zhì)等問(wèn)題,還考查了轉(zhuǎn)化思想和構(gòu)造轉(zhuǎn)化函數(shù)的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函數(shù)f(x)的最小正周期;
(2)若函數(shù)y=f(2x+
π
4
)
的圖象關(guān)于直線x=
π
6
對(duì)稱,求φ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)為定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,時(shí)f(x)的表達(dá)式;
(2)若關(guān)于x的方程f(x)-a=o有解,求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=aInx-ax,(a∈R)
(1)求f(x)的單調(diào)遞增區(qū)間;(文科可參考公式:(Inx)=
1
x

(2)若f′(2)=1,記函數(shù)g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在區(qū)間(1,3)上總不單調(diào),求實(shí)數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點(diǎn)A(1,f(1))處的切線l與直線3x-y+2=0平行,若數(shù)列{
1
f(n)
}
的前n項(xiàng)和為Sn,則S2010的值為( 。
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是定義在區(qū)間(-1,1)上的奇函數(shù),且對(duì)于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案