已知數(shù)列 {an}的前n項(xiàng)和Sn=2n2-3n
(1)證明數(shù)列{an}是等差數(shù)列.
(2)若bn=an•2n,求數(shù)列{bn}的前n項(xiàng)和Tn.
解:(1)a
1=S
1=-1
當(dāng)n≥2時,a
n=S
n-S
n-1=2n
2-3n-2(n-1)
2+3(n-1)=4n-5
又a
1適合上式 a
n=4n-5(n∈N*)
當(dāng)n≥2時,a
n-a
n-1=4n-5-4(n-1)+5=4{a
n}是Ap且d=4,a
1=-1
(2)b
n=(4n-5)•2
n(差比數(shù)列求和)
∴S
n=-2
1+3•2
2+…(4n-5)•2
n①
①2S
n=-2
2+…+(4n-9)•2
n+(4n-5)•2
n+1②
①-②得-S
n=-2
1+4•2
2+…+4•2
n-(4n-5)•2
n+1=
=-18-(4n-9)•2
n+1∴S
n=18+(4n-9)•2
n+1分析:(1)利用數(shù)列的通項(xiàng)與前n項(xiàng)和的關(guān)系:當(dāng)n≥2時,a
n=S
n-S
n-1求出數(shù)列{a
n}的通項(xiàng),利用等差數(shù)列的定義得證.
(2)根據(jù)數(shù)列{b
n}通項(xiàng)的特點(diǎn):一等差與一等比數(shù)列的乘積得到的新數(shù)列,利用錯位相減法求出其和.
點(diǎn)評:求數(shù)列的前n項(xiàng)和問題,一般先判斷數(shù)列通項(xiàng)的特點(diǎn),根據(jù)其特點(diǎn)選擇合適的求和方法;常見的求和方法有:公式法、分組法、倒序相加法、錯位相減法、裂項(xiàng)相消法.