數(shù)列{an}滿足:a1+
1
2
a2+
1
22
a3+…+
1
2n-1
an=6-
2n+3
2n-1

(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{cn}滿足:cn=an+2,又{bn}是首項(xiàng)為6,公差為1的等差數(shù)列,且對(duì)任意正整數(shù)n,不等式
a
(1+
1
c1
)(1+
1
c2
)(1+
1
c3
)…(1+
1
cn
)
-
1
n-2+bn
≤0
恒成立,求正數(shù)a的取值范圍.
分析:(1)利用遞推式,再寫一式,兩式相減,即可求數(shù)列{an}的通項(xiàng)公式;
(2)確定數(shù)列的通項(xiàng),
a
(1+
1
c1
)(1+
1
c2
)(1+
1
c3
)…(1+
1
cn
)
-
1
n-2+bn
≤0
等價(jià)于a≤
4
3
6
5
•…
2n+2
2n+1
2n+3
,確定右邊的單調(diào)性,求最值,即可得到結(jié)論.
解答:解:(1)∵a1+
1
2
a2+
1
22
a3+…+
1
2n-1
an=6-
2n+3
2n-1

∴n≥2時(shí),a1+
1
2
a2+
1
22
a3+…+
1
2n-2
an-1=6-
2n+1
2n-2

∴兩式相減可得
1
2n-1
an
=
2n-1
2n-1

∴an=2n-1
n=1時(shí),a1=1,也滿足上式,
∴an=2n-1
(2)cn=an+2=2n+1,
∵{bn}是首項(xiàng)為6,公差為1的等差數(shù)列,
∴bn=n+5,
a
(1+
1
c1
)(1+
1
c2
)(1+
1
c3
)…(1+
1
cn
)
-
1
n-2+bn
≤0
等價(jià)于a≤
4
3
6
5
•…
2n+2
2n+1
2n+3

令f(n)=
4
3
6
5
•…
2n+2
2n+1
2n+3
,則f(n+1)=
4
3
6
5
•…
2n+4
2n+3
2n+5

f(n+1)
f(n)
=
2n+4
(2n+3)(2n+5)
=
4n2+16n+16
4n2+16n+15
>1
∴f(n+1)>f(n)
∴n=1時(shí),f(n)最小,即
4
5
15

∴a≤
4
5
15
點(diǎn)評(píng):本題考查數(shù)列遞推式,考查數(shù)列的通項(xiàng),考查恒成立問題,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}滿足a1=a,an+1=can+1-c(n∈N*),其中a,c為實(shí)數(shù),且c≠0.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)a=
1
2
,c=
1
2
,bn=n(1-an)(n∈N*)
,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}滿足a1=a,an+1=
an+3
2
,n=1,2,3,….
(Ⅰ)若an+1=an,求a的值;
(Ⅱ)當(dāng)a=
1
2
時(shí),證明:an
3
2
;
(Ⅲ)設(shè)數(shù)列{an-1}的前n項(xiàng)之積為Tn.若對(duì)任意正整數(shù)n,總有(an+1)Tn≤6成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•天津模擬)設(shè)數(shù)列{an}滿足a1=a,an+1=can+1-c(n∈N*),其中a,c為實(shí)數(shù),且c≠0.
(1)求證:a≠1時(shí)數(shù)列{an-1}是等比數(shù)列,并求an;
(2)設(shè)a=
1
2
c=
1
2
,bn=n(1-an)(n∈N*)
,求數(shù)列{bn}的前n項(xiàng)和Sn;
(3)設(shè)a=
3
4
,c=-
1
4
,cn=
3+an
2-an
(n∈N*),記dn=c2n-c2n-1(n∈N*)
,設(shè)數(shù)列{dn}的前n項(xiàng)和為Tn,求證:對(duì)任意正整數(shù)n都有Tn
5
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•大連二模)已知a為實(shí)數(shù),數(shù)列{an}滿足a1=a,當(dāng)n≥2時(shí),an=
an-1-4 (an-1>4)
5-an-1 (an-1≤4)

(I)當(dāng)a=200時(shí),填寫下列表格;
N 2 3 51 200
an
(II)當(dāng)a=200時(shí),求數(shù)列{an}的前200項(xiàng)的和S200;
(III)令b n=
an
(-2)n
,Tn=b1+b2…+bn求證:當(dāng)1<a<
5
3
時(shí),T n
5-3a
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知常數(shù)a、b都是正整數(shù),函數(shù)f(x)=
x
bx+1
(x>0),數(shù)列{an}滿足a1=a,
1
an+1
=f(
1
an
)
(n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若a=8b,且等比數(shù)列{bn}同時(shí)滿足:①b1=a1,b2=a5;②數(shù)列{bn}的每一項(xiàng)都是數(shù)列{an}中的某一項(xiàng).試判斷數(shù)列{bn}是有窮數(shù)列或是無窮數(shù)列,并簡要說明理由;
(3)對(duì)問題(2)繼續(xù)探究,若b2=am(m>1,m是常數(shù)),當(dāng)m取何正整數(shù)時(shí),數(shù)列{bn}是有窮數(shù)列;當(dāng)m取何正整數(shù)時(shí),數(shù)列{bn}是無窮數(shù)列,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案