精英家教網 > 高中數學 > 題目詳情

某校在一次趣味運動會的頒獎儀式上,高一、高二、高三各代表隊人數分別為120人、120人、n人.為了活躍氣氛,大會組委會在頒獎過程中穿插抽獎活動,并用分層抽樣的方法從三個代表隊中共抽取20人在前排就坐,其中高二代表隊有6人.
(1)求n的值;
(2)把在前排就坐的高二代表隊6人分別記為a,b,c,d,e,f,現(xiàn)隨機從中抽取2人上臺抽獎,.求a和b至少有一人上臺抽獎的概率;

(1)160;(2)

解析試題分析:(1)分層抽樣是安比例抽取,所以根據比例相等列式計算。(2)屬古典概型概率,用例舉法將所有情況一一例舉出來計算基本事件總數,再將符合要求的事件找出來計算出基本事件數,根據古典概型概率公式求其概率。
試題解析:解:(1)依題意,由
120:120:n=6:6:8                               2分
得n=160                      4分
(2)記事件A為“a和b至少有一人上臺抽獎”,
從高二代表隊6人中抽取2人上臺抽獎的所有基本事件列舉如下:
          7分
共15種可能,                     8分
其中事件A包含的基本事件有9種:ab、ac、ad、ae、af、bc、bd、be、bf  10分
所以P(A)=            12分
考點:1分層抽樣;2古典概型概率。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

某校高一(1)班的一次數學測試成績的莖葉圖和頻率分布直方圖都受到不同程度的污損,可見部分如下圖.

(1)求分數在的頻率及全班人數;
(2)求分數在之間的頻數,并計算頻率分布直方圖中間矩形的高;
(3)若要從分數在之間的試卷中任取兩份分析學生失分情況,求在抽取的試卷中,至少有一份分數在之間的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某單位最近組織了一次健身活動,參加活動的職工分為登山組和游泳組,且每個職工至多參加其中一組.在參加活動的職工中,青年人占42.5%,中年人占47.5%,老年人占10%.登山組的職工占參加活動總人數的,且該組中青年人占50%,中年人占40%,老年人占10%.為了了解各組中不同年齡層次的職工對本次活動的滿意程度,現(xiàn)用分層抽樣的方法從參加活動的全體職工中抽取一個容量為200的樣本.試確定
(1)游泳組中青年人、中年人、老年人分別所占的比例.
(2)游泳組中青年人、中年人、老年人分別應抽取的人數.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在某次測驗中,有6位同學的平均成績?yōu)?5分.用表示編號為)的同學所得成績,且前5位同學的成績如下:70,76,72,70,72.
(1)求第6位同學的成績,及這6位同學成績的標準差
(2)從前5位同學中,隨機地選2位同學,求恰有1位同學成績在區(qū)間(68,75)中的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

近年來,我國許多地方出現(xiàn)霧霾天氣,影響了人們的出行、工作與健康.其形成與 有關. 是指大氣中直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物. 日均值越小,空氣質量越好.為加強生態(tài)文明建設,我國國家環(huán)保部于2012年2月29日,發(fā)布了《環(huán)境空氣質量標準》見下表:

日均值k(微克)
空氣質量等級

一級

二級

超標

某環(huán)保部門為了了解甲、乙兩市的空氣質量狀況,在某月中分別隨機抽取了甲、乙兩市6天的日均值作為樣本,樣本數據莖葉圖如右圖所示(十位為莖,個位為葉).
(1)求甲、乙兩市日均值的樣本平均數,據此判斷該月中哪個市的空氣質量較好;
(2)若從甲市這6天的樣本數據中隨機抽取兩天的數據,求恰有一天空氣質量等級為一級的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

為了調查某大學學生在某天上網的時間,隨機對100名男生和100名女生進行了不記名的問卷調查.得到了如下的統(tǒng)計結果:
表1:男生上網時間與頻數分布表

上網時間(分鐘)
[30,40)
[40,50)
[50,60)
[60,70)
[70,80]
人數
5
25
30
25
15
表2:女生上網時間與頻數分布表
上網時間(分鐘)
[30,40)
[40,50)
[50,60)
[60,70)
[70,80]
人數
10
20
40
20
10
(1)從這100名男生中任意選出3人,求其中恰有1人上網時間少于60分鐘的概率;
(2)完成下面的2×2列聯(lián)表,并回答能否有90%的把握認為“大學生上網時間與性別有關”?
 
上網時間少于60分鐘
上網時間不少于60分鐘
合計
男生
 
 
 
女生
 
 
 
合計
 
 
 
附:K2
P(K2≥k0)
0.100
0.050
0.025
0.010
0.005
k0
2.706
3.841
5.024
6.635
7.879

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

空氣質量已成為城市居住環(huán)境的一項重要指標,空氣質量的好壞由空氣質量指數確定。空氣質量指數越高,代表空氣污染越嚴重:

空氣質量指數
0~35
35~75
75~115
115~150
150~250
≥250
空氣質量類別
優(yōu)

輕度污染
中度污染
重度污染
嚴重污染
經過對某市空氣質量指數進行一個月(30天)監(jiān)測,獲得數據后得到條形圖統(tǒng)計圖如圖:

(1)估計某市一個月內空氣受到污染的概率(規(guī)定:空氣質量指數大于或等于75,空氣受到污染);
(2)在空氣質量類別為“良”、“輕度污染”、“中度污染”的監(jiān)測數據中用分層抽樣方法抽取一個容量為6的樣本,若在這6數據中任取2個數據,求這2個數據所對應的空氣質量類別不都是輕度污染的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

據《中國新聞網》10月21日報道,全國很多省市將英語考試作為高考改革的重點,一時間“英語考試該如何改”引起廣泛關注.為了解某地區(qū)學生和包括老師、家長在內的社會人士對高考英語改革的看法,某媒體在該地區(qū)選擇了3600人調查,就是否“取消英語聽力”的問題,調查統(tǒng)計的結果如下表:

態(tài)度

 

應該取消
應該保留
無所謂
在校學生
2100人
120人
y人
社會人士
600人
x人
z人
已知在全體樣本中隨機抽取1人,抽到持“應該保留”態(tài)度的人的概率為0.05.
(Ⅰ)現(xiàn)用分層抽樣的方法在所有參與調查的人中抽取360人進行問卷訪談,問應在持“無所謂”態(tài)度的人中抽取多少人?
(Ⅱ)在持“應該保留”態(tài)度的人中,用分層抽樣的方法抽取6人平均分成兩組進行深入交流,求第一組中在校學生人數ξ的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某單位名員工參加“社區(qū)低碳你我他”活動.他們的年齡在歲至
之間.按年齡分組:第1組,第,第3組,第,第,得到的頻率分布直方圖如圖所示.下表是年齡的頻率分布表.

區(qū)間





人數



 
 
(1)求正整數、的值;
(2)現(xiàn)要從年齡較小的第、組中用分層抽樣的方法抽取人,則年齡在第、組的人數分別
是多少?
(3)在(2)的條件下,從這人中隨機抽取人參加社區(qū)宣傳交流活動,求恰有人在第組的概率.

查看答案和解析>>

同步練習冊答案