練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
.已知橢圓的中心在坐標原點
,長軸長為
,離心率
,過右焦點
的直線
交橢圓于
,
兩點.
(Ⅰ)求橢圓的方程;
(Ⅱ)當直線
的斜率為1時,求
的面積;
(Ⅲ)若以
為鄰邊的平行四邊形是矩形,求滿足該條件的直線
的方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分13分)已知橢圓的中心在原點,一個焦點F
1(0,-2
),且離心率e滿足:
,e,
成等比數(shù)列.
(1)求橢圓方程;
(2)是否存在直線l,使l與橢圓交于不同的兩點M、N,且線段MN恰被直線x=-
平分.若存在,
求出l的傾斜角的范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題9分)
已知橢圓C經過點M(1,
),兩個焦
點為(-1,0)、(1,0)。
(1)求橢圓C的方程;
(2)直線y=2x-1與橢圓C相交于A、B兩點,求線段AB的長。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
過橢圓
的左焦點作直線
軸,交橢圓C于A,B兩點,若△OAB(O為坐標原點)是直角三角形,則橢圓C的離心率e為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
橢圓的長軸為A
1A
2,B為短軸一端點,若
,則橢圓的離心率為
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知橢圓C:
(a>b>0)的
離心率為
,過右焦點F且斜率為
k(
k>0)的直線與橢圓C相交于A、B兩點,若
。則
( )
(A)1 (B)2 (C)
(D)
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
三、解答題(本大題共有3個小題,共40分。解答應寫出文字說明、演算步驟或證明過程。)
13. (本小題滿分13分)
已知命題
:方程
表示焦點在
軸上的橢圓,命題
:關于x的方程
無實根,若“
”為假命題,“
”為真命題,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知
在橢圓
上,
,
是橢圓
的焦點,則
( )
A.6 | B.3 | C. | D.2 |
查看答案和解析>>