【題目】如圖程序框圖輸出的結(jié)果為(
A.52
B.55
C.63
D.65

【答案】A
【解析】解:模擬程序的運(yùn)行,可得:

s=0,i=3

執(zhí)行循環(huán)體,s=3,i=4

不滿足條件i>10,執(zhí)行循環(huán)體,s=7,i=5

不滿足條件i>10,執(zhí)行循環(huán)體,s=12,i=6

不滿足條件i>10,執(zhí)行循環(huán)體,s=18,i=7

不滿足條件i>10,執(zhí)行循環(huán)體,s=25,i=8

不滿足條件i>10,執(zhí)行循環(huán)體,s=33,i=9

不滿足條件i>10,執(zhí)行循環(huán)體,s=42,i=10

不滿足條件i>10,執(zhí)行循環(huán)體,s=52,i=11

滿足條件i>10,退出循環(huán),輸出s的值為52.

故選:A.

【考點(diǎn)精析】掌握程序框圖是解答本題的根本,需要知道程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準(zhǔn)確、直觀地表示算法的圖形;一個(gè)程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線;程序框外必要文字說明.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在底面是菱形的四棱錐P—ABCD中,∠ABC=60°,PA=AC=a,PB=PD= ,點(diǎn)EPD的中點(diǎn).

(Ⅰ)求證:PA⊥平面ABCD;

(Ⅱ)求二面角E—AC—D的大;

(Ⅲ)求點(diǎn)P到平面EAC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為減少空氣污染,某市鼓勵(lì)居民用電(減少燃?xì)饣蛉济海,采用分段?jì)費(fèi)的方法計(jì)算:電費(fèi)每月用電不超過100度時(shí),按每度0.57元計(jì)算;每月用電量超過100度時(shí),其中的100度仍按原標(biāo)準(zhǔn)收費(fèi),超過的部分每度按0.5元計(jì)算.

(Ⅰ)設(shè)月用電度時(shí),應(yīng)交電費(fèi)元,寫出關(guān)于的函數(shù)關(guān)系式;

(Ⅱ)小明家第一季度繳納電費(fèi)情況如下:

月份

一月

二月

三月

合計(jì)

交費(fèi)金額

76元

63元

45.6元

184.6元

問小明家第一季度共用電多少度?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在△ABC中, a、b、c分別為角A、B、C的對(duì)邊,且

(1)若,試判斷△ABC的形狀;

(2)若a=,b+c=3,求b和c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在四棱錐P﹣ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E,F(xiàn)分別是線段AB,BC的中點(diǎn).
(1)證明:PF⊥FD;
(2)若PA=1,求點(diǎn)E到平面PFD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 處都取得極值.
(1)求a,b的值;
(2)求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市春節(jié)7家超市的廣告費(fèi)支出x(萬元)和銷售額y(萬元)數(shù)據(jù)如下,

超市

A

B

C

D

E

F

G

廣告費(fèi)支出x

1

2

4

6

11

13

19

銷售額y

19

32

40

44

52

53

54


(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù).用最小二乘法求出y關(guān)于x的線性回歸方程; = x+
(2)用二次函數(shù)回歸模型擬合y與x的關(guān)系,可得回歸方程: =﹣0.17x2+5x+20. 經(jīng)計(jì)算二次函數(shù)回歸模型和線性回歸模型的R2分別約為0.93和0.75,請(qǐng)用R2說明選擇哪個(gè)回歸模型更合適.并用此模型預(yù)測(cè)A超市廣告費(fèi)支出為3萬元時(shí)的銷售額,
參考數(shù)據(jù)及公式: =8, =42. xiyi=2794, x =708,
= = , = x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在各項(xiàng)為正的數(shù)列{an}中,數(shù)列的前n項(xiàng)和Sn滿足Sn= (an+ ),
(1)求a1 , a2 , a3
(2)由(1)猜想數(shù)列{an}的通項(xiàng)公式,并用數(shù)學(xué)歸納法證明你的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

(Ⅰ)當(dāng)時(shí),若關(guān)于的方程有且只有兩個(gè)不同的實(shí)根,求實(shí)數(shù)的取值范圍;

(Ⅱ)對(duì)任意時(shí),不等式恒成立的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案