【題目】如圖程序框圖輸出的結(jié)果為( )
A.52
B.55
C.63
D.65
【答案】A
【解析】解:模擬程序的運(yùn)行,可得:
s=0,i=3
執(zhí)行循環(huán)體,s=3,i=4
不滿足條件i>10,執(zhí)行循環(huán)體,s=7,i=5
不滿足條件i>10,執(zhí)行循環(huán)體,s=12,i=6
不滿足條件i>10,執(zhí)行循環(huán)體,s=18,i=7
不滿足條件i>10,執(zhí)行循環(huán)體,s=25,i=8
不滿足條件i>10,執(zhí)行循環(huán)體,s=33,i=9
不滿足條件i>10,執(zhí)行循環(huán)體,s=42,i=10
不滿足條件i>10,執(zhí)行循環(huán)體,s=52,i=11
滿足條件i>10,退出循環(huán),輸出s的值為52.
故選:A.
【考點(diǎn)精析】掌握程序框圖是解答本題的根本,需要知道程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準(zhǔn)確、直觀地表示算法的圖形;一個(gè)程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線;程序框外必要文字說明.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在底面是菱形的四棱錐P—ABCD中,∠ABC=60°,PA=AC=a,PB=PD= ,點(diǎn)E是PD的中點(diǎn).
(Ⅰ)求證:PA⊥平面ABCD;
(Ⅱ)求二面角E—AC—D的大;
(Ⅲ)求點(diǎn)P到平面EAC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為減少空氣污染,某市鼓勵(lì)居民用電(減少燃?xì)饣蛉济海,采用分段?jì)費(fèi)的方法計(jì)算:電費(fèi)每月用電不超過100度時(shí),按每度0.57元計(jì)算;每月用電量超過100度時(shí),其中的100度仍按原標(biāo)準(zhǔn)收費(fèi),超過的部分每度按0.5元計(jì)算.
(Ⅰ)設(shè)月用電度時(shí),應(yīng)交電費(fèi)元,寫出關(guān)于的函數(shù)關(guān)系式;
(Ⅱ)小明家第一季度繳納電費(fèi)情況如下:
月份 | 一月 | 二月 | 三月 | 合計(jì) |
交費(fèi)金額 | 76元 | 63元 | 45.6元 | 184.6元 |
問小明家第一季度共用電多少度?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在△ABC中, a、b、c分別為角A、B、C的對(duì)邊,且
(1)若,試判斷△ABC的形狀;
(2)若a=,b+c=3,求b和c的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在四棱錐P﹣ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E,F(xiàn)分別是線段AB,BC的中點(diǎn).
(1)證明:PF⊥FD;
(2)若PA=1,求點(diǎn)E到平面PFD的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市春節(jié)7家超市的廣告費(fèi)支出x(萬元)和銷售額y(萬元)數(shù)據(jù)如下,
超市 | A | B | C | D | E | F | G |
廣告費(fèi)支出x | 1 | 2 | 4 | 6 | 11 | 13 | 19 |
銷售額y | 19 | 32 | 40 | 44 | 52 | 53 | 54 |
(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù).用最小二乘法求出y關(guān)于x的線性回歸方程; = x+
(2)用二次函數(shù)回歸模型擬合y與x的關(guān)系,可得回歸方程: =﹣0.17x2+5x+20. 經(jīng)計(jì)算二次函數(shù)回歸模型和線性回歸模型的R2分別約為0.93和0.75,請(qǐng)用R2說明選擇哪個(gè)回歸模型更合適.并用此模型預(yù)測(cè)A超市廣告費(fèi)支出為3萬元時(shí)的銷售額,
參考數(shù)據(jù)及公式: =8, =42. xiyi=2794, x =708,
= = , = ﹣ x.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在各項(xiàng)為正的數(shù)列{an}中,數(shù)列的前n項(xiàng)和Sn滿足Sn= (an+ ),
(1)求a1 , a2 , a3;
(2)由(1)猜想數(shù)列{an}的通項(xiàng)公式,并用數(shù)學(xué)歸納法證明你的猜想.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知.
(Ⅰ)當(dāng)時(shí),若關(guān)于的方程有且只有兩個(gè)不同的實(shí)根,求實(shí)數(shù)的取值范圍;
(Ⅱ)對(duì)任意時(shí),不等式恒成立,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com