【題目】在五面體中, , , ,平面平面..

(1)證明:直線平面;

(2)已知為棱上的點,試確定點位置,使二面角的大小為.

【答案】(1)見解析;(2)點靠近點的的三等分點處.

【解析】試題分析:證明一條直線垂直一個平面,只需要證明這條兩個平面垂直,直線垂直兩個平面的交線即可。證明,因為平面平面,平面平面, ,即可得到直線平面

根據(jù)題意,取的中點,證明 , 兩兩垂直,以為原點, , , , 軸,建立空間直角坐標(biāo)系,進(jìn)行計算,確定點靠近點的的三等分點處

解析:(1)證明:∵,∴,

∴四邊形為菱形,∴,

∵平面平面,平面平面,

,∴平面,

,又∵,

∴直線平面.

(2)∵,∴為正三角形,

的中點,連接,則,∴,

∵平面平面, 平面,平面平面,

平面,

,∴, 兩兩垂直,

為原點, , , , 軸,建立空間直角坐標(biāo)系,如圖,

, ,

.

由(1)知是平面的法向量,

, ,

設(shè),則.

設(shè)平面的法向量為,

, ,∴

,則, ,∴,

∵二面角

,解得.

點靠近點的的三等分點處.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知曲線與曲線,(為參數(shù)).以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系.

1)寫出曲線,的極坐標(biāo)方程;

2)在極坐標(biāo)系中,已知,的公共點分別為,,當(dāng)時,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線的左、右焦點分別為,圓與雙曲線在第一象限內(nèi)的交點為M,若.則該雙曲線的離心率為

A. 2B. 3C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市房產(chǎn)中心數(shù)據(jù)研究顯示,2018年該市新建住宅銷售均價如下表.3月至7月房價上漲過快,為抑制房價過快上漲,政府從8月份開始出臺了相關(guān)限購政策,10月份開始房價得到了很好的抑制.

均價(萬元/

0.95

0.98

1.11

1.12

1.20

1.22

1.32

1.34

1.16

1.06

月份

3

4

5

6

7

8

9

10

11

12

(Ⅰ)請建立3月至7月線性回歸模型(保留小數(shù)點后3位),并預(yù)測若政府不宏觀調(diào)控,12月份該市新建住宅銷售均價;

(Ⅱ)試用相關(guān)系數(shù)說明3月至7月各月均價(萬元/)與月份之間可用線性回歸模型(保留小數(shù)點后2位)

參考數(shù)據(jù):,,,

回歸方程斜率和截距最小二乘法估計公式;

相關(guān)系數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(1)求函數(shù)的極小值;

(2)求證:當(dāng)時,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的短軸長為2,直線被橢圓截得的線段長為,為坐標(biāo)原點.

1)求橢圓的方程;

2)是否存在過點且斜率為的直線,與橢圓交于、兩點時,作線段的垂直平分線分別交軸、軸于,垂足為,使得的面積相等,若存在,試求出直線的方程,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2020年,新冠狀肺炎疫情牽動每一個中國人的心,危難時刻眾志成城,共克時艱,為疫區(qū)助力.福建省漳州市東山縣共101個海鮮商家及個人為緩解武漢物質(zhì)壓力,募捐價值百萬的海鮮輸送武漢.東山島,別稱陵島,形似蝴蝶亦稱蝶島,隸屬于福建省漳州市東山縣,是福建省第二大島,中國第七大島,介于廈門市和廣東省汕頭之間,東南是著名的閩南漁場和粵東漁場交匯處,因地理位置發(fā)展海產(chǎn)品養(yǎng)殖業(yè)具有得天獨厚的優(yōu)勢.根據(jù)養(yǎng)殖規(guī)模與以往的養(yǎng)殖經(jīng)驗,某海鮮商家的海產(chǎn)品每只質(zhì)量(克)在正常環(huán)境下服從正態(tài)分布

1)隨機購買10只該商家的海產(chǎn)品,求至少買到一只質(zhì)量小于265克該海產(chǎn)品的概率;

22020年該商家考慮增加先進(jìn)養(yǎng)殖技術(shù)投入,該商家欲預(yù)測先進(jìn)養(yǎng)殖技術(shù)投入為49千元時的年收益增量.現(xiàn)用以往的先進(jìn)養(yǎng)殖技術(shù)投入(千元)與年收益增量(千元).的數(shù)據(jù)繪制散點圖,由散點圖的樣本點分布,可以認(rèn)為樣本點集中在曲線的附近,且,其中.根據(jù)所給的統(tǒng)計量,求y關(guān)于x的回歸方程,并預(yù)測先進(jìn)養(yǎng)殖技術(shù)投入為49千元時的年收益增量.

附:若隨機變量,則;

對于一組數(shù)據(jù),其回歸線的斜率和截距的最小二乘估計分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的參數(shù)方程為為參數(shù)),直線經(jīng)過點且傾斜角為.

1)求曲線的極坐標(biāo)方程和直線的參數(shù)方程;

2)已知直線與曲線交于,滿足的中點,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),.

1)求不等式的解集;

2)若關(guān)于的不等式在實數(shù)范圍內(nèi)解集為空集,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案