在△ABC中,若
tanA
tanB
=
a2
b2
,則△ABC的形狀是
等腰或直角三角形
等腰或直角三角形
分析:在△ABC中,利用正弦定理將
tanA
tanB
=
a2
b2
中等號(hào)右端的邊化為其所對(duì)角的正弦,再由二倍角公式即可求得答案.
解答:解:在△ABC中,由正弦定理得:
a
sinA
=
b
sinB
,
a
b
=
sinA
sinB

tanA
tanB
=
a2
b2
?
tanA
tanB
=
sin2A
sin2B
,
∴sin2A=sin2B,
又A,B為三角形的內(nèi)角,
∴2A=2B或2A+2B=π,
∴A=B或A+B=
π
2

∴△ABC為等腰三角形或直角三角形.
故答案為:等腰或直角三角形.
點(diǎn)評(píng):本題考查三角形的形狀判斷,著重考查正弦定理與二倍角公式的應(yīng)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,若tanA+tanB+tanC=1,則tanAtanBtanC=
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,若tanA=-
1
2
,則cosA=
2
5
5
2
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,若tanA=-2,則cosA=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列四個(gè)命題:
①?x∈R,ex≥ex;②?x0∈(1,2),使得(
x
2
0
-3x0+2)ex0+3x0-4=0
成立;③若ABCD為長(zhǎng)方形,AB=2,BC=1,O為AB的中點(diǎn),在長(zhǎng)方形ABCD內(nèi)隨機(jī)取一點(diǎn),取得的點(diǎn)到O距離大小1的概率為1-
π
2
;④在△ABC中,若tanA+tanB+tanC>0,則△ABC是銳角三角形,其中正確命題的序號(hào)是
①②④
①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,若tanA=2tanB=3tanC,則cosA的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案