在△ABC中,角A、B、C的對(duì)邊分別為a、b、c,滿足2cos2(A+B)=2cosC+cos2C.
(1)求角C;
(2)若△ABC的面積為S=4
3
(3),求a+b的最小值.
分析:(1)利用cos(A+B)=cosC,代入題設(shè)等式,進(jìn)而利用二倍角公式化簡(jiǎn)整理求得cosC的值,進(jìn)而求得C.
(2)先根據(jù)三角形面積公式求得ab的值,進(jìn)而利用均值不等式求得a+b的最小值.
解答:解:(1)∵2cos2(A+B)=2cosC+cos2C
∴2cos2C=2cosC+cos2C
∴cos2C+1=2cosC+cos2C
∴cosC=
1
2

∴C=
π
3

(2)∵S=
1
2
absinC
∴4
3
=
1
2
ab
3
2

∴ab=16
又∵a>0,b>0
∴a+b≥2
ab

∴a+b≥8
當(dāng)且僅當(dāng)a=b=4時(shí),等號(hào)成立
∴a+b的最小值為8
點(diǎn)評(píng):本題主要考查了同角三角函數(shù)基本關(guān)系的應(yīng)用和基本不等式的應(yīng)用.在應(yīng)用均值不等式時(shí)要注意等號(hào)成立的條件.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對(duì)的邊分別為a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,則下列關(guān)系一定不成立的是( 。
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,且bsinA=
3
acosB

(1)求角B的大;
(2)若a=4,c=3,D為BC的中點(diǎn),求△ABC的面積及AD的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c并且滿足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對(duì)邊的長(zhǎng)分別為a,b,c,且a=
5
,b=3,sinC=2sinA
,則sinA=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案