已知(1-2x)2014=a0+a1x+a2x2+…+a2014x2014,則a1+2a2+3a3+…+2014a2014=
 
考點:二項式系數(shù)的性質(zhì)
專題:二項式定理
分析:由條件可得-4028(1-2x)2013 =a1+2a2x+…+a2014x2013 ①,在等式①中,令x=1,可得a1+2a2+3a3+…+2014a2014的值.
解答: 解:∵(1-2x)2014=a0+a1x+a2x2+…+a2014x2014
兩邊分別對x求導數(shù),可得-4028(1-2x)2013=a1+2a2x+…+a2014x2013 ①.
在等式①中,令x=1,可得a1+2a2+3a3+…+2014a2014=4028,
故答案為:4028.
點評:本題主要考查二項式定理的應用,是給變量賦值的問題,關(guān)鍵是根據(jù)要求的結(jié)果,選擇合適的數(shù)值代入,屬于基題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足a1=4,an+1-4an=4n(n∈N*),數(shù)列{bn}滿足bn=
an
4n

(Ⅰ)求證:數(shù)列{bn}是等差數(shù)列;
(Ⅱ)設Sn=
a1
4
+
a2
5
+
a3
6
+…+
an
n+3
,求滿足不等式
1
257
Sn
S2n
1
5
的所有正整數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知Sn是數(shù)列{an}的前n項和,an>0,且Sn=
an2+an
2
(n∈N*
(Ⅰ)求證數(shù)列{an}是等差數(shù)列;
(Ⅱ)設數(shù)列{bn}滿足bn=
1
Sn
,求數(shù)列{bn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

長方體ABCD-A1B1C1D1中,AB=AD=1,BB1=2,E為BB1的中點.(1)求證:AE⊥平面A1D1E;
(2)求二面角E-AD1-A1的正切值;
(3)求三棱錐A-C1D1E的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}的前n項和Sn,已知a1=1,a2=2,a3=3,且(4n-3)Sn+1-(4n+5)Sn=αn+β(n∈N*),其中α,β為常數(shù).
(1)求α,β的值;
(2)證明數(shù)列{an}為等差數(shù)列;
(3)設bn=a1a2+a2a3+…+anan+1,求和
(a2+a3)
b1)a1
+
(a3+a4)
b2)a2
+…+
(an+1+an+2)
bn)an
(n∈N*).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在研究色盲與性別的關(guān)系調(diào)查中,調(diào)查了男性240人,其中有19人患色盲,調(diào)查的260個女性中3人患色盲
(1)根據(jù)以上的數(shù)據(jù)建立一個2*2的列聯(lián)表;
(2)若認為“性別與患色盲有關(guān)系”,則出錯的概率會是多少.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=(sinx+cosx)2+2cos2x
(1)求f(x)的最小正周期及最大值;
(2)求f(x)的單調(diào)減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在直三棱柱ABC-A1B1C1中,AA1=AC=2AB=2,且BC1⊥A1C.
(Ⅰ)求證:平面ABC1⊥平面A1C1CA;
(Ⅱ)設D是A1C1的中點,判斷并證明在線段BB1上是否存在點E,使DE∥平面ABC1;若存在,求三棱錐E-ABC1的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知tan(π+α)=2,求
(1)
sinα+2cosα
cosα-sinα

(2)
2sin2α+cos2α
sinαcosα-cos2α

(3)sinαcosα

查看答案和解析>>

同步練習冊答案