橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的一個(gè)焦點(diǎn)為F,點(diǎn)P在橢圓上,且△OPF(O為坐標(biāo)原點(diǎn))為等邊三角形,則橢圓的離心率e=
 
分析:先確定等邊三角形的邊長(zhǎng)和點(diǎn)P橫坐標(biāo),求出點(diǎn)P到右準(zhǔn)線的距離d,利用橢圓定義解出離心率e.
解答:解:不妨設(shè)F為右焦點(diǎn),△OPF(O為坐標(biāo)原點(diǎn))為等邊三角形,
故點(diǎn)P橫坐標(biāo)為
c
2
,∴點(diǎn)P到右準(zhǔn)線的距離d=
a2
c
-
c
2
=
2a2-c2
2c
,△OPF邊長(zhǎng)為c,
∴e=
|PF|
d
=
c
d
=
2c2
2a2-c2
=
2e2
2-e2

解方程得:e=
3
-1,或  e=-
3
-1  (舍去)
點(diǎn)評(píng):數(shù)形結(jié)合,運(yùn)用橢圓的定義.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b
=1(a>b>0)
的左、右焦點(diǎn)分別為F1、F2,離心率e=
2
2
,右準(zhǔn)線方程為x=2.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)F1的直線l與該橢圓交于M、N兩點(diǎn),且|
F2M
+
F2N
|=
2
26
3
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,橢圓
x2
a2
+
y2
b 
=1(a>b>0)與過(guò)點(diǎn)A(2,0)B(0,1)的直線有且只有一個(gè)公共點(diǎn)T,且橢圓的離心率e=
3
2

(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)F1、F2分別為橢圓的左、右焦點(diǎn),求證:|AT|2=
1
2
|AF1||AF2|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,橢圓
x2
a2
+
y2
b 
=1(a>b>0)與過(guò)點(diǎn)A(2,0)B(0,1)的直線有且只有一個(gè)公共點(diǎn)T,且橢圓的離心率e=
3
2

(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)F1、F2分別為橢圓的左、右焦點(diǎn),M為線段AF1的中點(diǎn),求證:∠ATM=∠AF1T.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè) A(x1,y1)、B(x2,y2)是橢圓
x2
a2
+
y2
b2
=1
(a>b>0)上的兩點(diǎn),O為坐標(biāo)原點(diǎn),向量
m
=(
x1
a
,
y1
b
),
n
=(
x2
a
,
y2
b
)
m
n
=0

(1)若A點(diǎn)坐標(biāo)為(a,0),求點(diǎn)B的坐標(biāo);
(2)設(shè)
OM
=cosθ•
OA
+sinθ•
OB
,證明點(diǎn)M在橢圓上;
(3)若點(diǎn)P、Q為橢圓 上的兩點(diǎn),且
PQ
OB
,試問(wèn):線段PQ能否被直線OA平分?若能平分,請(qǐng)加以證明;若不能平分,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:四川 題型:解答題

已知橢圓
x2
a2
+
y2
b
=1(a>b>0)
的左、右焦點(diǎn)分別為F1、F2,離心率e=
2
2
,右準(zhǔn)線方程為x=2.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)F1的直線l與該橢圓交于M、N兩點(diǎn),且|
F2M
+
F2N
|=
2
26
3
,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案