如圖所示,已知空間四邊形ABCD的邊BC=AC,AD=BD,引BE⊥CD,E為垂足,作AH⊥BE于H.求證:AH⊥平面BCD.

答案:略
解析:

證明:取AB中點(diǎn)F,連CF、DF,∵AC=BC,∴CFAB

又∵AD=BD,∴DFAB,∴AB⊥平面CDF

CD平面CDF,∴CDAB

CDBE,∴CD⊥平面ABE,CDAH

AHBE,∴AH⊥平面BCD


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

我們將底面是正方形,側(cè)棱長(zhǎng)都相等的棱錐稱為正四棱錐.已知由兩個(gè)完全相同的正四棱錐組合而成的空間幾何體的正視圖、側(cè)視圖、俯視圖都相同,且如圖所示,視圖中四邊形ABCD是邊長(zhǎng)為1的正方形,則該幾何體的體積為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:044

如圖所示,已知平面與空間四邊形ABCD的四條邊

AB、BCCD、DA分別交于E、F、G、H

若四邊形EFGH是平行四邊形.求證:BD//,AC//.

   

 

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:數(shù)學(xué)教研室 題型:044

如圖所示,已知平面與空間四邊形ABCD的四條邊

AB、BCCD、DA分別交于E、F、GH,

若四邊形EFGH是平行四邊形.求證:BD//,AC//.

   

 

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年上海市崇明縣高三高考模擬考試二模理科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知四棱錐的底面ABCD為正方形,平面ABCD,E、F分別是BC,PC的中點(diǎn),,

(1)求證:平面;

(2)求二面角的大小.

【解析】第一問(wèn)利用線面垂直的判定定理和建立空間直角坐標(biāo)系得到法向量來(lái)表示二面角的。

第二問(wèn)中,以A為原點(diǎn),如圖所示建立直角坐標(biāo)系

,,

設(shè)平面FAE法向量為,則

,

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年福建省福州三中高三(上)期中數(shù)學(xué)試卷(解析版) 題型:選擇題

我們將底面是正方形,側(cè)棱長(zhǎng)都相等的棱錐稱為正四棱錐.已知由兩個(gè)完全相同的正四棱錐組合而成的空間幾何體的正視圖、側(cè)視圖、俯視圖都相同,且如圖所示,視圖中四邊形ABCD是邊長(zhǎng)為1的正方形,則該幾何體的體積為( )

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案