如圖,VC是△ABC所在平面的斜線,V在面ABC上的射影為N,N在△ABC的高CD上,M是VC上的一點,∠MDC=∠CVN.求證:VC⊥面AMB.

證明:∵VN⊥面ABC,CD⊥AB,且N在CD上,

∴由三垂線定理知AB⊥VC.又∵VN⊥平面ABC,∴VN⊥DN.

∵∠MDC=∠CVN,且∠VCD=∠VCD,∴∠DMC=∠VNC=90°,

即VC⊥DM.又∵AB∩DM=D,∴VC⊥平面ABM.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

19、如圖已知VC是△ABC所在平面的一條斜線,點N是V在平面ABC上的射影,且在△ABC的高CD上.AB=a,VC與AB之間的距離為h,點M∈VC.
(1)證明∠MDC是二面角M-AB-C的平面角;
(2)當∠MDC=∠CVN時,證明VC⊥平面AMB.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知VC是△ABC所在平面的一條斜線,點N是V在平面ABC上的射影,且在△ABC的高CD上(如圖).

(1)證明:∠MDC是二面角M-AB-C的平面角;

(2)當∠MDC=∠CVN時,證明:VC⊥平面AMB;

查看答案和解析>>

科目:高中數(shù)學 來源:2001年安徽省高考數(shù)學試卷(理)(解析版) 題型:解答題

如圖已知VC是△ABC所在平面的一條斜線,點N是V在平面ABC上的射影,且在△ABC的高CD上.AB=a,VC與AB之間的距離為h,點M∈VC.
(1)證明∠MDC是二面角M-AB-C的平面角;
(2)當∠MDC=∠CVN時,證明VC⊥平面AMB.

查看答案和解析>>

科目:高中數(shù)學 來源:2001年北京市高考數(shù)學試卷(理)(解析版) 題型:解答題

如圖已知VC是△ABC所在平面的一條斜線,點N是V在平面ABC上的射影,且在△ABC的高CD上.AB=a,VC與AB之間的距離為h,點M∈VC.
(1)證明∠MDC是二面角M-AB-C的平面角;
(2)當∠MDC=∠CVN時,證明VC⊥平面AMB.

查看答案和解析>>

同步練習冊答案