如圖,A,B是圓O上的兩點,且OAOB,OA=2COA的中點,連接BC并延長交圓O于點DCD= .

 

 

【答案】

【解析】

試題分析:由相交弦定理得:,其中為直線與圓另一交點,因為,所以

考點:相交弦定理

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖:A,B是圓O上的兩點,點C是圓O與x軸正半軸的交點,已知A(-3,4),且點B在劣弧CA上,△AOB為正三角形.
(1)求cos∠COA;
(2)求|BC|的值.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年福建省廈門二中高二(上)數(shù)學國慶作業(yè)4(文科)(解析版) 題型:解答題

如圖:A,B是圓O上的兩點,點C是圓O與x軸正半軸的交點,已知A(-3,4),且點B在劣弧CA上,△AOB為正三角形.
(1)求cos∠COA;
(2)求|BC|的值.

查看答案和解析>>

科目:高中數(shù)學 來源:2007-2008學年江蘇省南京市金陵中學、海安中學高三聯(lián)考數(shù)學試卷(解析版) 題型:解答題

如圖:A,B是圓O上的兩點,點C是圓O與x軸正半軸的交點,已知A(-3,4),且點B在劣弧CA上,△AOB為正三角形.
(1)求cos∠COA;
(2)求|BC|的值.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年高三數(shù)學第一輪基礎知識訓練(29)(解析版) 題型:解答題

如圖:A,B是圓O上的兩點,點C是圓O與x軸正半軸的交點,已知A(-3,4),且點B在劣弧CA上,△AOB為正三角形.
(1)求cos∠COA;
(2)求|BC|的值.

查看答案和解析>>

同步練習冊答案