(2009•成都模擬)設(shè)函數(shù)f(x)=
x2+bx+c
2
其中b>0,c∈R.當(dāng)且僅當(dāng)x=-2時,函數(shù)f(x)取得最小值-2.
(1)求函數(shù)f(x)的表達(dá)式;
(2)若方程f(x)=x+a(a∈R)至少有兩個不相同的實(shí)數(shù)根,求a取值的集合.
分析:(1)注意關(guān)鍵字:當(dāng)且僅當(dāng)x=-2時,函數(shù)f(x)取得最小值-2,說明表達(dá)式中的二次函數(shù)圖象關(guān)于直線x=-2對稱,并且f(-2)=-2,由此可得出b、c的值,從而得到函數(shù)f(x)的表達(dá)式;
(2)作出函數(shù)y=f(x)的圖象,再作出直線l:y=x+a,通過先求出兩圖象恰有兩個不同公共點(diǎn)的臨界位置,再平移直線,根據(jù)直線在y軸上截距的取值范圍,最后求得a取值的集合.
解答:解:(1)∵當(dāng)且僅當(dāng)x=-2時,函數(shù)f(x)取得最小值-2
∴二次函數(shù)y=x2+bx+c圖象關(guān)于直線x=-2對稱且f(-2)=-2
可得
-
b
2
=-2
(-2) 2+b(-2)+c=-2
b=4
c=-2

∴函數(shù)f(x)的表達(dá)式為f(x)=
x2+4x+2,x≤0
2,x>0

(2)同一坐標(biāo)系里,作出函數(shù)y=f(x)的圖象和直線l:y=x+a,可得:
①當(dāng)a=2時,直線l與y=f(x)的圖象有兩個不同的公共點(diǎn),
②將直線向下平移至兩圖象相切,此時由x2+4x+2=x+a得
x2+3x+2-a=0,根的判別式△=9-4(2-a)=0,⇒a=-
1
4

綜合①②這兩種特殊位置,可得當(dāng)-
1
4
≤a≤2時,直線l在圖中兩條件平行線之間運(yùn)動(含邊界)
此時兩圖象有兩個或三個公共點(diǎn),相應(yīng)地方程有至少兩個不相同的實(shí)數(shù)根
所以a取值的集合是:[-
1
4
,2]
點(diǎn)評:本題著重考查了函數(shù)解析式求解的常用方法和根的存在性及根的個數(shù)判斷等知識點(diǎn),屬于中檔題.采用數(shù)形結(jié)合與分類討論,使本題化難為易,迎刃而解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2009•成都模擬)設(shè)雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左右焦點(diǎn)分別是F1、F2,過點(diǎn)F2的直線交雙曲線右支于不同的兩點(diǎn)M、N,若△MNF1為正三角形,則該雙曲線的離心率為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•成都模擬)在等比數(shù)列{an}中,若a2=4,a5=32,則公比應(yīng)為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•成都模擬)已知圓的方程為x2+y2-6x-8y=0,設(shè)圓中過點(diǎn)(2,5)的最長弦與最短弦為分別為AB、CD,則直線AB與CD的斜率之和為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•成都模擬)已知條件甲:函數(shù)f(x)=ax(a>0,a≠1)在其定義域內(nèi)是減函數(shù),條件乙:loga
1
2
>0
,則條件甲是條件乙的( 。

查看答案和解析>>

同步練習(xí)冊答案