.其中.">

【題目】司機在開機動車時使用手機是違法行為,會存在嚴(yán)重的安全隱患,危及自己和他人的生命. 為了研究司機開車時使用手機的情況,交警部門調(diào)查了名機動車司機,得到以下統(tǒng)計:在名男性司機中,開車時使用手機的有人,開車時不使用手機的有人;在名女性司機中,開車時使用手機的有人,開車時不使用手機的有人.

(1)完成下面的列聯(lián)表,并判斷是否有的把握認(rèn)為開車時使用手機與司機的性別有關(guān);

開車時使用手機

開車時不使用手機

合計

男性司機人數(shù)

女性司機人數(shù)

合計

(2)以上述的樣本數(shù)據(jù)來估計總體,現(xiàn)交警部門從道路上行駛的大量機動車中隨機抽檢3輛,記這3輛車中司機為男性且開車時使用手機的車輛數(shù)為,若每次抽檢的結(jié)果都相互獨立,求的分布列和數(shù)學(xué)期望

參考公式與數(shù)據(jù):

參考數(shù)據(jù):

參考公式

span>,其中.

【答案】(1)列聯(lián)表見解析,有;(2)分布列見解析,.

【解析】

1)根據(jù)已知數(shù)據(jù)即可得到列聯(lián)表;計算出,對比臨界值表可得到結(jié)果;(2)由樣本估計總體思想,可得到隨機抽檢輛,司機為男性且開車使用手機的概率為,可知,由二項分布概率公式可計算得到每個取值所對應(yīng)的概率,從而得到分布列;由二項分布數(shù)學(xué)期望計算公式可得.

(1)由已知數(shù)據(jù)可得列聯(lián)表如下:

開車時使用手機

開車時不使用手機

合計

男性司機人數(shù)

女性司機人數(shù)

合計

的把握認(rèn)為開車時使用手機與司機的性別有關(guān)

(2)隨機抽檢輛,司機為男性且開車時使用手機的概率

有題意可知:可取值是,且

;;

;

的分布列為:

數(shù)學(xué)期望

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平行四邊形中,,過點作的垂線,交的延長線于點,.連結(jié),交于點,如圖1,將沿折起,使得點到達點的位置,如圖2.

(1)證明:平面平面

(2)若的中點,的中點,且平面平面,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,,是由直線引出的三個不重合的半平面,其中二面角大小為60°,在二面角內(nèi)繞直線旋轉(zhuǎn),圓內(nèi),且圓,內(nèi)的射影分別為橢圓,.記橢圓,的離心率分別為,則的取值范圍是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)若曲線在它們的交點處有相同的切線,求實數(shù)a,b的值;

(2)當(dāng)時,若函數(shù)在區(qū)間內(nèi)恰有兩個零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓的中心在坐標(biāo)原點,焦點軸上,過坐標(biāo)原點的直線兩點,,面積的最大值為

1)求橢圓的方程;

2是橢圓上與不重合的一點,證明:直線的斜率之積為定值;

3)當(dāng)點在第一象限時,軸,垂足為,連接并延長交于點,求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過拋物線x22py(p>0)的焦點,斜率為的直線交拋物線于A(x1,y1),B(x2,y2)(x1<x2)兩點,且|AB|9.

(1)求該拋物線的方程;

(2)O為坐標(biāo)原點,C為拋物線上一點,若,λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C過兩點A04),B4,6),且圓心在直線x2y2=0上.

1)求圓C的方程;

2)若直線l過原點且被圓C截得的弦長為6,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形為正方形,分別為的中點,以為折痕把折起,使點到達點的位置,且.

(1)證明:平面平面;

(2)求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左右焦點分別為,左右頂點分別是、,長軸長為,是以原點為圓心,為半徑的圓的任一條直徑,四邊形的面積最大值為.

(1)求橢圓的方程;

(2)不經(jīng)過原點的直線與橢圓交于、兩點,

①若直線的斜率分別為,,且,求證:直線過定點,并求出該定點的坐標(biāo);

②若直線的斜率是直線、斜率的等比中項,求面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案