過點(0,1)且與曲線在點(3,2)處的切線垂直的直線的方程為

[  ]
A.

2x-y+1=0

B.

2x+y-1=0

C.

x+2y-2=0

D.

x-2y+2=0

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義F(x,y)=(1+x)y,x,y∈(0,+∞)
(1)令函數(shù)f(x)=F(1,log2(x2-4x+9))的圖象為曲線c1,曲線c1與y軸交于點A(0,m),過坐標原點O作曲線c1的切線,切點為B(n,t)(n>0)設(shè)曲線c1在點A、B之間的曲線段與OA、OB所圍成圖形的面積為S,求S的值;
(2)當x,y∈N*且x<y時,證明F(x,y)>F(y,x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)精英家教網(wǎng)如圖1,OA,OB是某地一個湖泊的兩條互相垂直的湖堤,線段CD和曲線段EF分別是湖泊中的一座棧橋和一條防波堤.為觀光旅游的需要,擬過棧橋CD上某點M分別修建與OA,OB平行的棧橋MG、MK,且以MG、MK為邊建一個跨越水面的三角形觀光平臺MGK.建立如圖2所示的直角坐標系,測得線段CD的方程是x+2y=20(0≤x≤20),曲線段EF的方程是xy=200(5≤x≤40),設(shè)點M的坐標為(s,t),記z=s•t.(題中所涉及的長度單位均為米,棧橋和防波堤都不計寬度
(1)求z的取值范圍;
(2)試寫出三角形觀光平臺MGK面積S△MGK關(guān)于z的函數(shù)解析式,并求出該面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省深圳市高級中學(xué)高三(上)第二次測試數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

定義F(x,y)=(1+x)y,x,y∈(0,+∞)
(1)令函數(shù)f(x)=F(1,log2(x2-4x+9))的圖象為曲線c1,曲線c1與y軸交于點A(0,m),過坐標原點O作曲線c1的切線,切點為B(n,t)(n>0)設(shè)曲線c1在點A、B之間的曲線段與OA、OB所圍成圖形的面積為S,求S的值;
(2)當x,y∈N*且x<y時,證明F(x,y)>F(y,x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年山東省聊城市水城中學(xué)高三(上)模塊數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

定義F(x,y)=(1+x)y,x,y∈(0,+∞)
(1)令函數(shù)f(x)=F(1,log2(x2-4x+9))的圖象為曲線c1,曲線c1與y軸交于點A(0,m),過坐標原點O作曲線c1的切線,切點為B(n,t)(n>0)設(shè)曲線c1在點A、B之間的曲線段與OA、OB所圍成圖形的面積為S,求S的值;
(2)當x,y∈N*且x<y時,證明F(x,y)>F(y,x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年山東省煙臺市高三(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

定義F(x,y)=(1+x)y,x,y∈(0,+∞)
(1)令函數(shù)f(x)=F(1,log2(x2-4x+9))的圖象為曲線c1,曲線c1與y軸交于點A(0,m),過坐標原點O作曲線c1的切線,切點為B(n,t)(n>0)設(shè)曲線c1在點A、B之間的曲線段與OA、OB所圍成圖形的面積為S,求S的值;
(2)當x,y∈N*且x<y時,證明F(x,y)>F(y,x).

查看答案和解析>>

同步練習(xí)冊答案