已知數(shù)列.
(1)求證:數(shù)列為等比數(shù)列;
(2)數(shù)列中,是否存在連續(xù)的三項(xiàng),這三項(xiàng)構(gòu)成等比數(shù)列?試說明理由;
(3)設(shè),其中為常數(shù),且,
,求.

解:⑴∵=,∴
,
為常數(shù)∴數(shù)列為等比數(shù)列
⑵取數(shù)列的連續(xù)三項(xiàng),
,
,∴,即
∴數(shù)列中不存在連續(xù)三項(xiàng)構(gòu)成等比數(shù)列;            
⑶當(dāng)時(shí),,此時(shí);
當(dāng)時(shí),為偶數(shù);而為奇數(shù),此時(shí)
當(dāng)時(shí),,此時(shí);
當(dāng)時(shí),,發(fā)現(xiàn)符合要求,下面證明唯一性(即只有符合要求)。
,
設(shè),則上的減函數(shù),∴的解只有一個(gè)
從而當(dāng)且僅當(dāng)時(shí),即,此時(shí)
當(dāng)時(shí),,發(fā)現(xiàn)符合要求,下面同理可證明唯一性(即只有符合要求)。
從而當(dāng)且僅當(dāng)時(shí),即,此時(shí);
綜上,當(dāng),時(shí),;
當(dāng)時(shí),,
當(dāng)時(shí),。      

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012年四川省樂山市高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

已知數(shù)列an滿足
(1)求數(shù)列an的通項(xiàng)公式an
(2)設(shè),求數(shù)列bn的前n項(xiàng)和Sn;
(3)設(shè),數(shù)列cn的前n項(xiàng)和為Tn.求證:對任意的

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年山西省大同五中高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

已知數(shù)列an滿足
(1)求數(shù)列an的通項(xiàng)公式an;
(2)設(shè),求數(shù)列bn的前n項(xiàng)和Sn;
(3)設(shè),數(shù)列cn的前n項(xiàng)和為Tn.求證:對任意的

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年湖北省高考數(shù)學(xué)壓軸卷(理科)(解析版) 題型:解答題

已知數(shù)列an滿足
(1)求數(shù)列an的通項(xiàng)公式an
(2)設(shè),求數(shù)列bn的前n項(xiàng)和Sn;
(3)設(shè),數(shù)列cn的前n項(xiàng)和為Tn.求證:對任意的

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007年廣東省深圳市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

已知數(shù)列an滿足
(1)求數(shù)列an的通項(xiàng)公式an;
(2)設(shè),求數(shù)列bn的前n項(xiàng)和Sn;
(3)設(shè),數(shù)列cn的前n項(xiàng)和為Tn.求證:對任意的

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009年高考數(shù)學(xué)壓軸試卷集錦(8)(解析版) 題型:解答題

已知數(shù)列an滿足
(1)求數(shù)列an的通項(xiàng)公式an;
(2)設(shè),求數(shù)列bn的前n項(xiàng)和Sn;
(3)設(shè),數(shù)列cn的前n項(xiàng)和為Tn.求證:對任意的

查看答案和解析>>

同步練習(xí)冊答案