10.設(shè)函數(shù)$f(x)=\left\{\begin{array}{l}lnx,x≥1\\ f(\frac{1}{x}),0<x<1\end{array}\right.$,則f(f(e-2))=ln2.

分析 根據(jù)函數(shù)的解析式求出f(e-2)的值,從而求出f(2)的值即可.

解答 解:∵f(e-2)=f(e2)=lne2=2,
所以f(f(e-2))=f(2)=ln2,
故答案為:ln2.

點(diǎn)評 本題考查了函數(shù)求值問題,考查分段函數(shù)以及指數(shù)、對數(shù)的運(yùn)算,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率為$\frac{{\sqrt{3}}}{3}$,且過點(diǎn)$({\sqrt{3},2})$.
(1)求橢圓C的方程;
(2)過A(a,0)且相互垂直的兩條直線l1,l2,與橢圓C的另一個交點(diǎn)分別為P,Q,問直線PQ是否經(jīng)過定點(diǎn)?若是,求出該定點(diǎn)的坐標(biāo),否則,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)m為實(shí)數(shù),函數(shù)f(x)=x3-x2-x+m.
(1)求f(x)的極值點(diǎn);
(2)如果曲線y=f(x)與x軸僅有一個交點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.隨著人們經(jīng)濟(jì)收入的不斷增長,個人購買家庭轎車已不再是一種時尚,車的使用費(fèi)用,尤其是隨著使用年限的增多,所支出的費(fèi)用到底會增長多少,一直是購車一族非常關(guān)心的問題.某汽車銷售公司做了一次抽樣調(diào)査,并統(tǒng)計得出某款車的使用年限x與所支出的總費(fèi)用y(萬元)有如下的數(shù)據(jù)資料:
使用年限x23456
總費(fèi)用y2.23.85.56.57.0
若由資料知y對x呈線性相關(guān)關(guān)系.試求:
1線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$;
2估計使用年限為10年時,車的使用總費(fèi)用是多少?
附:回歸直線的斜率和截距的最小二乘法估計公式分別為:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知點(diǎn)A(1,2)、B(5,-1),
(1)若A,B兩點(diǎn)到直線l的距離都為2,求直線l的方程;
(2)若A,B兩點(diǎn)到直線l的距離都為m(m>0),試根據(jù)m的取值討論直線l存在的條數(shù),不需寫出直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{x≥1}\\{y≥1}\\{x+y-4≤0}\end{array}\right.$,若對于任意b∈[0,1],不等式ax-by>b恒成立,則實(shí)數(shù)a的取值范圍是( 。
A.($\frac{2}{3}$,4)B.($\frac{2}{3}$,+∞)C.(2,+∞)D.(4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知集合A={x∈N|4x-x2≥0},B={x∈N|log2(x+1)≥2},則A∩B等于( 。
A.{2,3}B.{3,4}C.{4,5}D.{5,6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)是二次函數(shù),且滿足f(0)=1,f(x+1)-f(x)=2x+5;函數(shù)g(x)=ax(a>0且a≠1)
(1)求f(x)的解析式;
(2)若g(2)=$\frac{1}{4}$,且g[f(x)]≥k對x∈[-1,1]恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.某城市一個交通路口原來只設(shè)有紅綠燈,平均每年發(fā)生交通事故80起,案件的破獲率為70%.為了加強(qiáng)該路口的管理,第二年在該路口設(shè)置了電子攝像頭,該年發(fā)生交通事故70起,共破獲了56起,第三年的白天安排了交警執(zhí)勤,該年發(fā)生交通事故60起,破獲了54起.
(1)根據(jù)以上材料分析,加強(qiáng)管理后的兩年該路口的交通狀況發(fā)生了怎樣的變化
(2)試采用獨(dú)立性檢驗進(jìn)行分析,電子攝像頭和白天的民警執(zhí)勤對該路口交通肇事案件的破獲分別產(chǎn)生了什么樣的影響.

查看答案和解析>>

同步練習(xí)冊答案